Solveeit Logo

Question

Question: $\frac{15-4x}{x^{2}-x-12}<4$...

154xx2x12<4\frac{15-4x}{x^{2}-x-12}<4

Answer

(,372)(3,372)(4,)(-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty)

Explanation

Solution

The given inequality is 154xx2x12<4\frac{15-4x}{x^{2}-x-12}<4.

Step 1: Move all terms to one side to get a zero on the other side. 154xx2x124<0\frac{15-4x}{x^{2}-x-12} - 4 < 0

Step 2: Find a common denominator and combine the terms into a single fraction. The denominator is x2x12x^2 - x - 12. Factoring the denominator, we get x2x12=(x4)(x+3)x^2 - x - 12 = (x-4)(x+3). So, the inequality is 154x(x4)(x+3)4<0\frac{15-4x}{(x-4)(x+3)} - 4 < 0. The common denominator is (x4)(x+3)(x-4)(x+3). 154x4(x4)(x+3)(x4)(x+3)<0\frac{15-4x - 4(x-4)(x+3)}{(x-4)(x+3)} < 0 Expand the term 4(x4)(x+3)4(x-4)(x+3): 4(x4)(x+3)=4(x2+3x4x12)=4(x2x12)=4x24x484(x-4)(x+3) = 4(x^2 + 3x - 4x - 12) = 4(x^2 - x - 12) = 4x^2 - 4x - 48. Substitute this back into the inequality: 154x(4x24x48)(x4)(x+3)<0\frac{15-4x - (4x^2 - 4x - 48)}{(x-4)(x+3)} < 0 154x4x2+4x+48(x4)(x+3)<0\frac{15-4x - 4x^2 + 4x + 48}{(x-4)(x+3)} < 0 4x2+63(x4)(x+3)<0\frac{-4x^2 + 63}{(x-4)(x+3)} < 0

Step 3: Multiply by -1 and reverse the inequality sign. 4x263(x4)(x+3)>0\frac{4x^2 - 63}{(x-4)(x+3)} > 0

Step 4: Find the critical points by setting the numerator and the denominator equal to zero. Numerator: 4x263=0    4x2=63    x2=634    x=±634=±9×72=±3724x^2 - 63 = 0 \implies 4x^2 = 63 \implies x^2 = \frac{63}{4} \implies x = \pm\sqrt{\frac{63}{4}} = \pm\frac{\sqrt{9 \times 7}}{2} = \pm\frac{3\sqrt{7}}{2}. The roots of the numerator are x=372x = -\frac{3\sqrt{7}}{2} and x=372x = \frac{3\sqrt{7}}{2}.

Denominator: (x4)(x+3)=0    x4=0(x-4)(x+3) = 0 \implies x-4 = 0 or x+3=0    x=4x+3 = 0 \implies x = 4 or x=3x = -3. The roots of the denominator are x=3x = -3 and x=4x = 4.

The critical points, in increasing order, are 372-\frac{3\sqrt{7}}{2}, 3-3, 372\frac{3\sqrt{7}}{2}, 44. Approximate values: 72.646\sqrt{7} \approx 2.646, so 3723×2.64627.93823.969\frac{3\sqrt{7}}{2} \approx \frac{3 \times 2.646}{2} \approx \frac{7.938}{2} \approx 3.969. The ordered critical points are approximately 3.969,3,3.969,4-3.969, -3, 3.969, 4.

Step 5: Analyze the sign of the expression 4x263(x4)(x+3)\frac{4x^2 - 63}{(x-4)(x+3)} in the intervals defined by the critical points. The critical points divide the number line into five intervals: (,372)(-\infty, -\frac{3\sqrt{7}}{2}), (372,3)(-\frac{3\sqrt{7}}{2}, -3), (3,372)(-3, \frac{3\sqrt{7}}{2}), (372,4)(\frac{3\sqrt{7}}{2}, 4), (4,)(4, \infty).

Let f(x)=4x263(x4)(x+3)f(x) = \frac{4x^2 - 63}{(x-4)(x+3)}. We need to find where f(x)>0f(x) > 0. We can use the sign chart method or test points in each interval. The expression is 4(x372)(x+372)(x4)(x+3)\frac{4(x - \frac{3\sqrt{7}}{2})(x + \frac{3\sqrt{7}}{2})}{(x-4)(x+3)}.

  • Interval (,372)(-\infty, -\frac{3\sqrt{7}}{2}): Choose x=5x=-5. f(5)=4(5)263(54)(5+3)=10063(9)(2)=3718>0f(-5) = \frac{4(-5)^2-63}{(-5-4)(-5+3)} = \frac{100-63}{(-9)(-2)} = \frac{37}{18} > 0.
  • Interval (372,3)(-\frac{3\sqrt{7}}{2}, -3): Choose x=3.5x=-3.5. f(3.5)=4(3.5)263(3.54)(3.5+3)=4(12.25)63(7.5)(0.5)=49633.75=143.75<0f(-3.5) = \frac{4(-3.5)^2-63}{(-3.5-4)(-3.5+3)} = \frac{4(12.25)-63}{(-7.5)(-0.5)} = \frac{49-63}{3.75} = \frac{-14}{3.75} < 0.
  • Interval (3,372)(-3, \frac{3\sqrt{7}}{2}): Choose x=0x=0. f(0)=4(0)263(04)(0+3)=63(4)(3)=6312=214>0f(0) = \frac{4(0)^2-63}{(0-4)(0+3)} = \frac{-63}{(-4)(3)} = \frac{-63}{-12} = \frac{21}{4} > 0.
  • Interval (372,4)(\frac{3\sqrt{7}}{2}, 4): Choose x=3.9x=3.9. f(3.9)=4(3.9)263(3.94)(3.9+3)=4(15.21)63(0.1)(6.9)=60.84630.69=2.160.69>0f(3.9) = \frac{4(3.9)^2-63}{(3.9-4)(3.9+3)} = \frac{4(15.21)-63}{(-0.1)(6.9)} = \frac{60.84-63}{-0.69} = \frac{-2.16}{-0.69} > 0.

The intervals where f(x)>0f(x) > 0 are (,372)(-\infty, -\frac{3\sqrt{7}}{2}), (3,372)(-3, \frac{3\sqrt{7}}{2}), and (4,)(4, \infty). The points where the denominator is zero (x=3x=-3 and x=4x=4) must be excluded from the solution. The points where the numerator is zero (x=±372x=\pm\frac{3\sqrt{7}}{2}) are also excluded because the inequality is strict (>0>0).

The solution set is the union of these intervals: x(,372)(3,372)(4,)x \in (-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty).