Solveeit Logo

Question

Question: $\frac{15-4x}{x^{2}-x-12}<4$...

154xx2x12<4\frac{15-4x}{x^{2}-x-12}<4

Answer

x(,372)(3,372)(4,)x \in (-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty)

Explanation

Solution

To solve the inequality 154xx2x12<4\frac{15-4x}{x^{2}-x-12}<4, follow these steps:

  1. Move all terms to one side:

    154xx2x124<0\frac{15-4x}{x^{2}-x-12} - 4 < 0

  2. Combine into a single fraction:

    154x4(x2x12)x2x12<0\frac{15-4x - 4(x^{2}-x-12)}{x^{2}-x-12} < 0

    154x4x2+4x+48x2x12<0\frac{15-4x - 4x^{2}+4x+48}{x^{2}-x-12} < 0

    4x2+63x2x12<0\frac{-4x^{2} + 63}{x^{2}-x-12} < 0

  3. Multiply by -1 and reverse the inequality:

    4x263x2x12>0\frac{4x^{2} - 63}{x^{2}-x-12} > 0

  4. Factor the numerator and denominator:

    Numerator: 4x263=(2x37)(2x+37)4x^{2} - 63 = (2x - 3\sqrt{7})(2x + 3\sqrt{7})

    Denominator: x2x12=(x4)(x+3)x^{2}-x-12 = (x-4)(x+3)

    So the inequality becomes:

    (2x37)(2x+37)(x4)(x+3)>0\frac{(2x - 3\sqrt{7})(2x + 3\sqrt{7})}{(x-4)(x+3)} > 0

  5. Find critical points:

    Numerator: x=±372x = \pm \frac{3\sqrt{7}}{2}

    Denominator: x=4,x=3x = 4, x = -3

  6. Arrange critical points in increasing order:

    3723.9675,3,3723.9675,4-\frac{3\sqrt{7}}{2} \approx -3.9675, -3, \frac{3\sqrt{7}}{2} \approx 3.9675, 4

  7. Determine the sign of the expression in each interval:

    • (,372)(-\infty, -\frac{3\sqrt{7}}{2}): Positive
    • (372,3)(-\frac{3\sqrt{7}}{2}, -3): Negative
    • (3,372)(-3, \frac{3\sqrt{7}}{2}): Positive
    • (372,4)(\frac{3\sqrt{7}}{2}, 4): Negative
    • (4,)(4, \infty): Positive
  8. Identify intervals where the expression is greater than 0:

    (,372)(3,372)(4,)(-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty)

Thus, the solution is x(,372)(3,372)(4,)x \in (-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty).