Solveeit Logo

Question

Question: $\frac{15-4x}{x^2-x-12} < 4$...

154xx2x12<4\frac{15-4x}{x^2-x-12} < 4

Answer

(,372)(3,372)(4,)(-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty)

Explanation

Solution

To solve the inequality 154xx2x12<4\frac{15-4x}{x^2-x-12} < 4:

  1. Move all terms to one side: 154xx2x124<0\frac{15-4x}{x^2-x-12} - 4 < 0

  2. Find a common denominator: 154x4(x2x12)x2x12<0\frac{15-4x - 4(x^2-x-12)}{x^2-x-12} < 0

  3. Expand and simplify the numerator: 154x4x2+4x+48x2x12<0\frac{15-4x - 4x^2 + 4x + 48}{x^2-x-12} < 0 4x2+63x2x12<0\frac{-4x^2 + 63}{x^2-x-12} < 0

  4. Multiply by -1 to make the leading coefficient positive (and reverse the inequality): 4x263x2x12>0\frac{4x^2 - 63}{x^2-x-12} > 0

  5. Find the roots of the numerator and denominator:

    • Numerator: 4x263=0    x=±372±3.9694x^2 - 63 = 0 \implies x = \pm \frac{3\sqrt{7}}{2} \approx \pm 3.969
    • Denominator: x2x12=0    (x4)(x+3)=0    x=4,3x^2 - x - 12 = 0 \implies (x-4)(x+3) = 0 \implies x = 4, -3
  6. The critical points are 3723.969-\frac{3\sqrt{7}}{2} \approx -3.969, 3-3, 3723.969\frac{3\sqrt{7}}{2} \approx 3.969, and 44.

  7. Test intervals: (,372)(-\infty, -\frac{3\sqrt{7}}{2}), (372,3)(-\frac{3\sqrt{7}}{2}, -3), (3,372)(-3, \frac{3\sqrt{7}}{2}), (372,4)(\frac{3\sqrt{7}}{2}, 4), (4,)(4, \infty).

  8. Determine the sign of the expression in each interval:

    • (,372)(-\infty, -\frac{3\sqrt{7}}{2}): Positive
    • (372,3)(-\frac{3\sqrt{7}}{2}, -3): Negative
    • (3,372)(-3, \frac{3\sqrt{7}}{2}): Positive
    • (372,4)(\frac{3\sqrt{7}}{2}, 4): Negative
    • (4,)(4, \infty): Positive
  9. Since we want the expression to be greater than 0, the solution is (,372)(3,372)(4,)(-\infty, -\frac{3\sqrt{7}}{2}) \cup (-3, \frac{3\sqrt{7}}{2}) \cup (4, \infty).