Solveeit Logo

Question

Question: $\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+\frac{3}{1+3^2+3^4}+...=H/w$...

11+12+14+21+22+24+31+32+34+...=H/w\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+\frac{3}{1+3^2+3^4}+...=H/w

Answer

1/2

Explanation

Solution

The problem asks to find the sum of the infinite series:

S=n=1n1+n2+n4S = \sum_{n=1}^{\infty} \frac{n}{1+n^2+n^4}

Let's analyze the general term of the series, Tn=n1+n2+n4T_n = \frac{n}{1+n^2+n^4}.

Step 1: Factorize the denominator

The denominator 1+n2+n41+n^2+n^4 can be factorized using the identity a4+a2+1=(a2+1)2a2=(a2+1a)(a2+1+a)a^4+a^2+1 = (a^2+1)^2 - a^2 = (a^2+1-a)(a^2+1+a). So, 1+n2+n4=(n2n+1)(n2+n+1)1+n^2+n^4 = (n^2-n+1)(n^2+n+1).

Step 2: Rewrite the general term as a difference of two terms

Substitute the factorization back into TnT_n:

Tn=n(n2n+1)(n2+n+1)T_n = \frac{n}{(n^2-n+1)(n^2+n+1)}

Notice that the difference between the two factors in the denominator is (n2+n+1)(n2n+1)=2n(n^2+n+1) - (n^2-n+1) = 2n. To utilize this, multiply and divide TnT_n by 2:

Tn=122n(n2n+1)(n2+n+1)T_n = \frac{1}{2} \frac{2n}{(n^2-n+1)(n^2+n+1)}

Now, replace 2n2n with the difference of the factors:

Tn=12(n2+n+1)(n2n+1)(n2n+1)(n2+n+1)T_n = \frac{1}{2} \frac{(n^2+n+1) - (n^2-n+1)}{(n^2-n+1)(n^2+n+1)}

This can be split into two fractions:

Tn=12(1n2n+11n2+n+1)T_n = \frac{1}{2} \left( \frac{1}{n^2-n+1} - \frac{1}{n^2+n+1} \right)

Step 3: Identify the telescoping sum pattern

Let f(n)=1n2n+1f(n) = \frac{1}{n^2-n+1}. Then, let's evaluate f(n+1)f(n+1):

f(n+1)=1(n+1)2(n+1)+1=1n2+2n+1n1+1=1n2+n+1f(n+1) = \frac{1}{(n+1)^2-(n+1)+1} = \frac{1}{n^2+2n+1-n-1+1} = \frac{1}{n^2+n+1}

So, the general term TnT_n can be written as:

Tn=12(f(n)f(n+1))T_n = \frac{1}{2} (f(n) - f(n+1))

Step 4: Calculate the partial sum SNS_N

The sum of the first NN terms is SN=n=1NTnS_N = \sum_{n=1}^{N} T_n:

SN=n=1N12(f(n)f(n+1))S_N = \sum_{n=1}^{N} \frac{1}{2} (f(n) - f(n+1)) SN=12[(f(1)f(2))+(f(2)f(3))+(f(3)f(4))++(f(N)f(N+1))]S_N = \frac{1}{2} [(f(1) - f(2)) + (f(2) - f(3)) + (f(3) - f(4)) + \dots + (f(N) - f(N+1))]

This is a telescoping sum where intermediate terms cancel out:

SN=12[f(1)f(N+1)]S_N = \frac{1}{2} [f(1) - f(N+1)]

Step 5: Evaluate f(1)f(1) and f(N+1)f(N+1)

f(1)=1121+1=11=1f(1) = \frac{1}{1^2-1+1} = \frac{1}{1} = 1 f(N+1)=1(N+1)2(N+1)+1=1N2+N+1f(N+1) = \frac{1}{(N+1)^2-(N+1)+1} = \frac{1}{N^2+N+1}

Substitute these values back into SNS_N:

SN=12[11N2+N+1]S_N = \frac{1}{2} \left[ 1 - \frac{1}{N^2+N+1} \right]

Step 6: Find the sum of the infinite series

The sum of the infinite series SS is the limit of SNS_N as NN \to \infty:

S=limNSN=limN12[11N2+N+1]S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{1}{2} \left[ 1 - \frac{1}{N^2+N+1} \right]

As NN \to \infty, the term 1N2+N+1\frac{1}{N^2+N+1} approaches 0.

S=12[10]=12S = \frac{1}{2} [1 - 0] = \frac{1}{2}

The sum of the given series is 12\frac{1}{2}.