Question
Question: \[1 + \frac{1 + 2}{2!} + \frac{1 + 2 + 3}{3!} + \frac{1 + 2 + 3 + 4}{4!} + ........\infty =\]...
1+2!1+2+3!1+2+3+4!1+2+3+4+........∞=
A
e
B
3 e
C
e/2
D
3e/2
Answer
3e/2
Explanation
Solution
Tn=n!∑n=2.n!n(n+1)
=21[(n−1)!(n+1)]=21[(n−1)!n−1+(n−1)!2]
=21[(n−2)!1+(n−1)!2]
Sn=∑n=1∞Tn=21∑n=1∞(n−2)!1+∑n=1∞(n−1)!1=2e+e=23e