Solveeit Logo

Question

Question: \[1 + \frac{1 + 2}{2!} + \frac{1 + 2 + 3}{3!} + \frac{1 + 2 + 3 + 4}{4!} + ........\infty =\]...

1+1+22!+1+2+33!+1+2+3+44!+........=1 + \frac{1 + 2}{2!} + \frac{1 + 2 + 3}{3!} + \frac{1 + 2 + 3 + 4}{4!} + ........\infty =

A

e

B

3 e

C

e/2

D

3e/2

Answer

3e/2

Explanation

Solution

Tn=nn!=n(n+1)2.n!T_{n} = \frac{\sum_{}^{}n}{n!} = \frac{n(n + 1)}{2.n!}

=12[(n+1)(n1)!]=12[n1(n1)!+2(n1)!]= \frac{1}{2}\left\lbrack \frac{(n + 1)}{(n - 1)!} \right\rbrack = \frac{1}{2}\left\lbrack \frac{n - 1}{(n - 1)!} + \frac{2}{(n - 1)!} \right\rbrack

=12[1(n2)!+2(n1)!]= \frac{1}{2}\left\lbrack \frac{1}{(n - 2)!} + \frac{2}{(n - 1)!} \right\rbrack

Sn=n=1Tn=12n=11(n2)!+n=11(n1)!=e2+e=3e2Sn = \sum_{n = 1}^{\infty}{T_{n} = \frac{1}{2}\sum_{n = 1}^{\infty}{\frac{1}{(n - 2)!} + \sum_{n = 1}^{\infty}\frac{1}{(n - 1)!}}} = \frac{e}{2} + e = \frac{3e}{2}