Solveeit Logo

Question

Question: For the reaction: xA $\rightarrow$ yB, $\log_{10}(-\frac{d[A]}{dt}) = \log_{10}(+\frac{d[B]}{dt})+0....

For the reaction: xA \rightarrow yB, log10(d[A]dt)=log10(+d[B]dt)+0.3\log_{10}(-\frac{d[A]}{dt}) = \log_{10}(+\frac{d[B]}{dt})+0.3

If the value of log105=0.7\log_{10}5 = 0.7, the value of x : y is :

A

2 : 1

B

1 : 2

C

3 : 10

D

5 : 2

Answer

2 : 1

Explanation

Solution

The rate of the reaction xA \rightarrow yB can be expressed in terms of the rate of disappearance of A and the rate of appearance of B using the stoichiometric coefficients:

Rate =1xd[A]dt=+1yd[B]dt= -\frac{1}{x}\frac{d[A]}{dt} = +\frac{1}{y}\frac{d[B]}{dt}

From this relationship, we can write:

d[A]dt=xy(+d[B]dt)-\frac{d[A]}{dt} = \frac{x}{y}\left(+\frac{d[B]}{dt}\right)

The problem gives a logarithmic relationship between the rates:

log10(d[A]dt)=log10(+d[B]dt)+0.3\log_{10}\left(-\frac{d[A]}{dt}\right) = \log_{10}\left(+\frac{d[B]}{dt}\right)+0.3

Substitute the expression for d[A]dt-\frac{d[A]}{dt} from the stoichiometric relationship into the given equation:

log10(xy(+d[B]dt))=log10(+d[B]dt)+0.3\log_{10}\left(\frac{x}{y}\left(+\frac{d[B]}{dt}\right)\right) = \log_{10}\left(+\frac{d[B]}{dt}\right)+0.3

Using the logarithm property log(AB)=logA+logB\log(AB) = \log A + \log B:

log10(xy)+log10(+d[B]dt)=log10(+d[B]dt)+0.3\log_{10}\left(\frac{x}{y}\right) + \log_{10}\left(+\frac{d[B]}{dt}\right) = \log_{10}\left(+\frac{d[B]}{dt}\right)+0.3

Subtract log10(+d[B]dt)\log_{10}\left(+\frac{d[B]}{dt}\right) from both sides of the equation:

log10(xy)=0.3\log_{10}\left(\frac{x}{y}\right) = 0.3

We are given that log105=0.7\log_{10}5 = 0.7. We know that log1010=1\log_{10}10 = 1. Using the logarithm property log(A/B)=logAlogB\log(A/B) = \log A - \log B:

log102=log10(105)=log1010log105=10.7=0.3\log_{10}2 = \log_{10}\left(\frac{10}{5}\right) = \log_{10}10 - \log_{10}5 = 1 - 0.7 = 0.3

So, the constant 0.3 is equal to log102\log_{10}2. Substitute this back into the equation for xy\frac{x}{y}:

log10(xy)=log102\log_{10}\left(\frac{x}{y}\right) = \log_{10}2

Since the logarithms are equal and the base is the same, the arguments must be equal:

xy=2\frac{x}{y} = 2

This means the ratio x : y is 2 : 1.