Solveeit Logo

Question

Question: Find two unit vectors each of which is perpendicular to both $\bar{u}$ and $\bar{v}$, where $\bar{u}...

Find two unit vectors each of which is perpendicular to both uˉ\bar{u} and vˉ\bar{v}, where uˉ=2i^+j^2k^,vˉ=i^+2j^2k^\bar{u} = 2\hat{i} + \hat{j} - 2\hat{k}, \bar{v} = \hat{i} + 2\hat{j} - 2\hat{k}

Answer

±1172,2,3\pm \frac{1}{\sqrt{17}}\langle 2, 2, 3 \rangle

Explanation

Solution

Step 1. Find the Cross Product

The unit vectors perpendicular to both u and v are along the direction of u × v. Given

u=2,1,2andv=1,2,2,\mathbf{u} = \langle2, 1,-2\rangle \quad \text{and} \quad \mathbf{v} = \langle1, 2,-2\rangle,

the cross product is:

u×v=u2v3u3v2,u3v1u1v3,u1v2u2v1.\mathbf{u}\times\mathbf{v} = \langle u_{2}v_{3} - u_{3}v_{2}, u_{3}v_{1} - u_{1}v_{3}, u_{1}v_{2} - u_{2}v_{1} \rangle.

Calculating each component:

  • xx-component: 1(2)(2)2=2+4=21\cdot(-2) - (-2)\cdot2 = -2 + 4 = 2,
  • yy-component: (2)12(2)=2+4=2(-2)\cdot1 - 2\cdot(-2) = -2 + 4 = 2,
  • zz-component: 2211=41=32\cdot2 - 1\cdot1 = 4 - 1 = 3.

Thus,

u×v=2,2,3.\mathbf{u}\times\mathbf{v} = \langle 2, 2, 3 \rangle.

Step 2. Find the Unit Vectors

The magnitude of u×v\mathbf{u}\times\mathbf{v} is:

u×v=22+22+32=4+4+9=17.\|\mathbf{u}\times\mathbf{v}\| = \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4+4+9} = \sqrt{17}.

The unit vector in the direction of u×v\mathbf{u}\times\mathbf{v} is:

n^=1172,2,3.\mathbf{\hat{n}} = \frac{1}{\sqrt{17}}\langle 2, 2, 3 \rangle.

Since both n^\mathbf{\hat{n}} and n^-\mathbf{\hat{n}} are perpendicular to both u\mathbf{u} and v\mathbf{v}, the two required unit vectors are:

±1172,2,3.\pm \frac{1}{\sqrt{17}}\langle 2, 2, 3 \rangle.