Solveeit Logo

Question

Question: Find the equation of tangent(s) to the parabola...

Find the equation of tangent(s) to the parabola

A

y^2 = 3x at the point (3,-3)

B

y^2 = 2x at the point (2,-2)

C

x^2 = 4y at the point (-4,4)

D

y^2 = 2x whose slope is 5/4

E

y^2 = 8x which is perpendicular to x + 2y + 7 = 0

F

x^2 = -2y which is parallel to 4x + y + 1 = 0

G

y^2 = 12x, which passes through the point (2,5)

H

y^2 = 2x at the ends of latus rectum of parabola.

I

y^2 = 8x and making an angle of 45^\circ with the line y = 3x + 5.

J

x^2 = 2y, which passes through (1,-1).

Answer

(i) x+2y+3=0x + 2y + 3 = 0 (ii) x+2y+2=0x + 2y + 2 = 0 (iii) 2x+y+4=02x + y + 4 = 0 (iv) 25x20y+8=025x - 20y + 8 = 0 (v) 2xy+1=02x - y + 1 = 0 (vi) 4x+y8=04x + y - 8 = 0 (vii) xy+3=0x - y + 3 = 0 and 3x2y+4=03x - 2y + 4 = 0 (viii) 2x2y+1=02x - 2y + 1 = 0 and 2x+2y+1=02x + 2y + 1 = 0 (ix) 2x+y+1=02x + y + 1 = 0 and x2y+8=0x - 2y + 8 = 0 (x) (1+3)xy(2+3)=0(1 + \sqrt{3})x - y - (2 + \sqrt{3}) = 0 and (13)xy(23)=0(1 - \sqrt{3})x - y - (2 - \sqrt{3}) = 0

Explanation

Solution

(i) For y2=3xy^2 = 3x, 4a=3    a=344a = 3 \implies a = \frac{3}{4}. Tangent at (x1,y1)(x_1, y_1) is yy1=2a(x+x1)yy_1 = 2a(x+x_1). At (3,3)(3, -3): y(3)=2(34)(x+3)    3y=32(x+3)    6y=3x+9    3x+6y+9=0    x+2y+3=0y(-3) = 2\left(\frac{3}{4}\right)(x+3) \implies -3y = \frac{3}{2}(x+3) \implies -6y = 3x+9 \implies 3x+6y+9=0 \implies x+2y+3=0.

(ii) For y2=2xy^2 = 2x, 4a=2    a=124a = 2 \implies a = \frac{1}{2}. Tangent at (2,2)(2, -2): y(2)=2(12)(x+2)    2y=x+2    x+2y+2=0y(-2) = 2\left(\frac{1}{2}\right)(x+2) \implies -2y = x+2 \implies x+2y+2=0.

(iii) For x2=4yx^2 = 4y, 4a=4    a=14a = 4 \implies a = 1. Tangent at (4,4)(-4, 4): xx1=2a(y+y1)    x(4)=2(1)(y+4)    4x=2y+8    4x+2y+8=0    2x+y+4=0xx_1 = 2a(y+y_1) \implies x(-4) = 2(1)(y+4) \implies -4x = 2y+8 \implies 4x+2y+8=0 \implies 2x+y+4=0.

(iv) For y2=2xy^2 = 2x, 4a=2    a=124a = 2 \implies a = \frac{1}{2}. Tangent with slope m=54m = \frac{5}{4} is y=mx+amy = mx + \frac{a}{m}. y=54x+1/25/4=54x+25    20y=25x+8    25x20y+8=0y = \frac{5}{4}x + \frac{1/2}{5/4} = \frac{5}{4}x + \frac{2}{5} \implies 20y = 25x + 8 \implies 25x - 20y + 8 = 0.

(v) For y2=8xy^2 = 8x, 4a=8    a=24a = 8 \implies a = 2. Line x+2y+7=0x+2y+7=0 has slope 12-\frac{1}{2}. Perpendicular tangent has slope m=2m = 2. Tangent equation: y=mx+am=2x+22=2x+1    2xy+1=0y = mx + \frac{a}{m} = 2x + \frac{2}{2} = 2x+1 \implies 2x-y+1=0.

(vi) For x2=2yx^2 = -2y, 4a=2    a=12-4a = -2 \implies a = \frac{1}{2}. Line 4x+y+1=04x+y+1=0 has slope 4-4. Parallel tangent has slope m=4m = -4. Tangent equation for x2=4ayx^2 = -4ay is y=mx+am2y = mx + am^2. y=4x+12(4)2=4x+8    4x+y8=0y = -4x + \frac{1}{2}(-4)^2 = -4x + 8 \implies 4x+y-8=0.

(vii) For y2=12xy^2 = 12x, 4a=12    a=34a = 12 \implies a = 3. Tangent through (2,5)(2,5) is y=mx+amy = mx + \frac{a}{m}. 5=2m+3m    5m=2m2+3    2m25m+3=0    (2m3)(m1)=05 = 2m + \frac{3}{m} \implies 5m = 2m^2 + 3 \implies 2m^2 - 5m + 3 = 0 \implies (2m-3)(m-1) = 0. m=1m=1 or m=32m=\frac{3}{2}. If m=1m=1, y=x+3    xy+3=0y = x + 3 \implies x-y+3=0. If m=32m=\frac{3}{2}, y=32x+33/2=32x+2    2y=3x+4    3x2y+4=0y = \frac{3}{2}x + \frac{3}{3/2} = \frac{3}{2}x + 2 \implies 2y = 3x+4 \implies 3x-2y+4=0.

(viii) For y2=2xy^2 = 2x, 4a=2    a=124a = 2 \implies a = \frac{1}{2}. Ends of latus rectum are (a,±2a)=(12,±1)(a, \pm 2a) = (\frac{1}{2}, \pm 1). At (12,1)(\frac{1}{2}, 1): y(1)=2(12)(x+12)    y=x+12    2x2y+1=0y(1) = 2\left(\frac{1}{2}\right)(x+\frac{1}{2}) \implies y = x+\frac{1}{2} \implies 2x-2y+1=0. At (12,1)(\frac{1}{2}, -1): y(1)=2(12)(x+12)    y=x+12    2x+2y+1=0y(-1) = 2\left(\frac{1}{2}\right)(x+\frac{1}{2}) \implies -y = x+\frac{1}{2} \implies 2x+2y+1=0.

(ix) For y2=8xy^2 = 8x, 4a=8    a=24a = 8 \implies a = 2. Line y=3x+5y=3x+5 has slope m2=3m_2=3. Angle 4545^\circ. tan45=m31+3m=1\tan 45^\circ = |\frac{m-3}{1+3m}| = 1. m31+3m=1    m3=1+3m    2m=4    m=2\frac{m-3}{1+3m} = 1 \implies m-3 = 1+3m \implies 2m = -4 \implies m = -2. m31+3m=1    m3=13m    4m=2    m=12\frac{m-3}{1+3m} = -1 \implies m-3 = -1-3m \implies 4m = 2 \implies m = \frac{1}{2}. Tangent equation y=mx+amy = mx + \frac{a}{m}. For m=2m=-2, y=2x+22=2x1    2x+y+1=0y = -2x + \frac{2}{-2} = -2x-1 \implies 2x+y+1=0. For m=12m=\frac{1}{2}, y=12x+21/2=12x+4    x2y+8=0y = \frac{1}{2}x + \frac{2}{1/2} = \frac{1}{2}x+4 \implies x-2y+8=0.

(x) For x2=2yx^2 = 2y, 4a=2    a=124a = 2 \implies a = \frac{1}{2}. Tangent through (1,1)(1,-1). Tangent equation y=mxam2y = mx - am^2. Point (1,1)(1,-1) is on the tangent: 1=m(1)am2    1=m12m2    m22m2=0-1 = m(1) - am^2 \implies -1 = m - \frac{1}{2}m^2 \implies m^2 - 2m - 2 = 0. m=2±44(1)(2)2=2±122=1±3m = \frac{2 \pm \sqrt{4 - 4(1)(-2)}}{2} = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3}. For m=1+3m = 1+\sqrt{3}: y=(1+3)x12(1+3)2=(1+3)x12(1+23+3)=(1+3)x(2+3)y = (1+\sqrt{3})x - \frac{1}{2}(1+\sqrt{3})^2 = (1+\sqrt{3})x - \frac{1}{2}(1+2\sqrt{3}+3) = (1+\sqrt{3})x - (2+\sqrt{3}). (1+3)xy(2+3)=0(1+\sqrt{3})x - y - (2+\sqrt{3}) = 0. For m=13m = 1-\sqrt{3}: y=(13)x12(13)2=(13)x12(123+3)=(13)x(23)y = (1-\sqrt{3})x - \frac{1}{2}(1-\sqrt{3})^2 = (1-\sqrt{3})x - \frac{1}{2}(1-2\sqrt{3}+3) = (1-\sqrt{3})x - (2-\sqrt{3}). (13)xy(23)=0(1-\sqrt{3})x - y - (2-\sqrt{3}) = 0.