Question
Question: Find the equation of tangent(s) to the parabola...
Find the equation of tangent(s) to the parabola

y^2 = 3x at the point (3,-3)
y^2 = 2x at the point (2,-2)
x^2 = 4y at the point (-4,4)
y^2 = 2x whose slope is 5/4
y^2 = 8x which is perpendicular to x + 2y + 7 = 0
x^2 = -2y which is parallel to 4x + y + 1 = 0
y^2 = 12x, which passes through the point (2,5)
y^2 = 2x at the ends of latus rectum of parabola.
y^2 = 8x and making an angle of 45^\circ with the line y = 3x + 5.
x^2 = 2y, which passes through (1,-1).
(i) x+2y+3=0 (ii) x+2y+2=0 (iii) 2x+y+4=0 (iv) 25x−20y+8=0 (v) 2x−y+1=0 (vi) 4x+y−8=0 (vii) x−y+3=0 and 3x−2y+4=0 (viii) 2x−2y+1=0 and 2x+2y+1=0 (ix) 2x+y+1=0 and x−2y+8=0 (x) (1+3)x−y−(2+3)=0 and (1−3)x−y−(2−3)=0
Solution
(i) For y2=3x, 4a=3⟹a=43. Tangent at (x1,y1) is yy1=2a(x+x1). At (3,−3): y(−3)=2(43)(x+3)⟹−3y=23(x+3)⟹−6y=3x+9⟹3x+6y+9=0⟹x+2y+3=0.
(ii) For y2=2x, 4a=2⟹a=21. Tangent at (2,−2): y(−2)=2(21)(x+2)⟹−2y=x+2⟹x+2y+2=0.
(iii) For x2=4y, 4a=4⟹a=1. Tangent at (−4,4): xx1=2a(y+y1)⟹x(−4)=2(1)(y+4)⟹−4x=2y+8⟹4x+2y+8=0⟹2x+y+4=0.
(iv) For y2=2x, 4a=2⟹a=21. Tangent with slope m=45 is y=mx+ma. y=45x+5/41/2=45x+52⟹20y=25x+8⟹25x−20y+8=0.
(v) For y2=8x, 4a=8⟹a=2. Line x+2y+7=0 has slope −21. Perpendicular tangent has slope m=2. Tangent equation: y=mx+ma=2x+22=2x+1⟹2x−y+1=0.
(vi) For x2=−2y, −4a=−2⟹a=21. Line 4x+y+1=0 has slope −4. Parallel tangent has slope m=−4. Tangent equation for x2=−4ay is y=mx+am2. y=−4x+21(−4)2=−4x+8⟹4x+y−8=0.
(vii) For y2=12x, 4a=12⟹a=3. Tangent through (2,5) is y=mx+ma. 5=2m+m3⟹5m=2m2+3⟹2m2−5m+3=0⟹(2m−3)(m−1)=0. m=1 or m=23. If m=1, y=x+3⟹x−y+3=0. If m=23, y=23x+3/23=23x+2⟹2y=3x+4⟹3x−2y+4=0.
(viii) For y2=2x, 4a=2⟹a=21. Ends of latus rectum are (a,±2a)=(21,±1). At (21,1): y(1)=2(21)(x+21)⟹y=x+21⟹2x−2y+1=0. At (21,−1): y(−1)=2(21)(x+21)⟹−y=x+21⟹2x+2y+1=0.
(ix) For y2=8x, 4a=8⟹a=2. Line y=3x+5 has slope m2=3. Angle 45∘. tan45∘=∣1+3mm−3∣=1. 1+3mm−3=1⟹m−3=1+3m⟹2m=−4⟹m=−2. 1+3mm−3=−1⟹m−3=−1−3m⟹4m=2⟹m=21. Tangent equation y=mx+ma. For m=−2, y=−2x+−22=−2x−1⟹2x+y+1=0. For m=21, y=21x+1/22=21x+4⟹x−2y+8=0.
(x) For x2=2y, 4a=2⟹a=21. Tangent through (1,−1). Tangent equation y=mx−am2. Point (1,−1) is on the tangent: −1=m(1)−am2⟹−1=m−21m2⟹m2−2m−2=0. m=22±4−4(1)(−2)=22±12=1±3. For m=1+3: y=(1+3)x−21(1+3)2=(1+3)x−21(1+23+3)=(1+3)x−(2+3). (1+3)x−y−(2+3)=0. For m=1−3: y=(1−3)x−21(1−3)2=(1−3)x−21(1−23+3)=(1−3)x−(2−3). (1−3)x−y−(2−3)=0.