Solveeit Logo

Question

Question: Find area enclosed by $y = \frac{lnx}{ex}$....

Find area enclosed by y=lnxexy = \frac{lnx}{ex}.

Answer

Infinite

Explanation

Solution

To find the area enclosed by the curve y=lnxexy = \frac{\ln x}{ex}, we first analyze the function:

  1. Domain: For lnx\ln x to be defined, x>0x > 0.
  2. x-intercept: Set y=0y=0. lnxex=0    lnx=0    x=e0=1\frac{\ln x}{ex} = 0 \implies \ln x = 0 \implies x = e^0 = 1. The curve intersects the x-axis at x=1x=1.
  3. Behavior as x0+x \to 0^+: limx0+lnxex=0+=\lim_{x \to 0^+} \frac{\ln x}{ex} = \frac{-\infty}{0^+} = -\infty. The y-axis (x=0x=0) is a vertical asymptote.
  4. Behavior as xx \to \infty: limxlnxex\lim_{x \to \infty} \frac{\ln x}{ex}. This is an indeterminate form \frac{\infty}{\infty}. Using L'Hopital's rule: limx1/xe=limx1ex=0\lim_{x \to \infty} \frac{1/x}{e} = \lim_{x \to \infty} \frac{1}{ex} = 0. The x-axis (y=0y=0) is a horizontal asymptote.

Graph Sketch: The curve starts from -\infty near the y-axis, crosses the x-axis at x=1x=1, rises to a maximum (at x=ex=e, y=1/e2y=1/e^2), and then approaches the x-axis as xx \to \infty. For 0<x<10 < x < 1, lnx<0\ln x < 0, so y<0y < 0 (the curve is below the x-axis). For x>1x > 1, lnx>0\ln x > 0, so y>0y > 0 (the curve is above the x-axis).

Area Calculation: The "area enclosed by the curve" usually refers to the area between the curve and the x-axis. Since the curve extends to infinity and approaches the x-axis, this involves an improper integral. The total area AA is the sum of the absolute value of the integral from 00 to 11 and the integral from 11 to \infty: A=01lnxexdx+1lnxexdxA = \int_{0}^{1} \left| \frac{\ln x}{ex} \right| dx + \int_{1}^{\infty} \frac{\ln x}{ex} dx Since lnxex<0\frac{\ln x}{ex} < 0 for 0<x<10 < x < 1, the first integral becomes: A=01lnxexdx+1lnxexdxA = \int_{0}^{1} -\frac{\ln x}{ex} dx + \int_{1}^{\infty} \frac{\ln x}{ex} dx

First, let's find the indefinite integral: lnxexdx=1elnxxdx\int \frac{\ln x}{ex} dx = \frac{1}{e} \int \frac{\ln x}{x} dx Let u=lnxu = \ln x, then du=1xdxdu = \frac{1}{x} dx. 1eudu=1eu22+C=(lnx)22e+C\frac{1}{e} \int u du = \frac{1}{e} \frac{u^2}{2} + C = \frac{(\ln x)^2}{2e} + C.

Now, evaluate the definite integrals:

Part 1: Area from x=0x=0 to x=1x=1 A1=01lnxexdx=[(lnx)22e]01A_1 = \int_{0}^{1} -\frac{\ln x}{ex} dx = - \left[ \frac{(\ln x)^2}{2e} \right]_{0}^{1} A1=((ln1)22elima0+(lna)22e)A_1 = - \left( \frac{(\ln 1)^2}{2e} - \lim_{a \to 0^+} \frac{(\ln a)^2}{2e} \right) Since ln1=0\ln 1 = 0, this simplifies to: A1=(0lima0+(lna)22e)A_1 = - \left( 0 - \lim_{a \to 0^+} \frac{(\ln a)^2}{2e} \right) As a0+a \to 0^+, lna\ln a \to -\infty, so (lna)2(\ln a)^2 \to \infty. Thus, A1=(0)=A_1 = - (0 - \infty) = \infty.

Part 2: Area from x=1x=1 to x=x=\infty A2=1lnxexdx=[(lnx)22e]1A_2 = \int_{1}^{\infty} \frac{\ln x}{ex} dx = \left[ \frac{(\ln x)^2}{2e} \right]_{1}^{\infty} A2=limb(lnb)22e(ln1)22eA_2 = \lim_{b \to \infty} \frac{(\ln b)^2}{2e} - \frac{(\ln 1)^2}{2e} Since ln1=0\ln 1 = 0, this simplifies to: A2=limb(lnb)22e0A_2 = \lim_{b \to \infty} \frac{(\ln b)^2}{2e} - 0 As bb \to \infty, lnb\ln b \to \infty, so (lnb)2(\ln b)^2 \to \infty. Thus, A2=A_2 = \infty.

Since both parts of the area calculation result in infinity, the total area enclosed by the curve and the x-axis is infinite.

Conclusion: The area enclosed by the curve y=lnxexy = \frac{\ln x}{ex} is infinite. In mathematical terms, the improper integral diverges.

Explanation of the solution: The area enclosed by the curve y=lnxexy = \frac{\ln x}{ex} and the x-axis is given by the improper integral 0lnxexdx\int_0^\infty \left| \frac{\ln x}{ex} \right| dx. This integral is split into two parts: 01lnxexdx\int_0^1 -\frac{\ln x}{ex} dx and 1lnxexdx\int_1^\infty \frac{\ln x}{ex} dx. The indefinite integral of lnxex\frac{\ln x}{ex} is (lnx)22e\frac{(\ln x)^2}{2e}. Evaluating the first part, lima0+[(lnx)22e]a1=\lim_{a \to 0^+} -\left[\frac{(\ln x)^2}{2e}\right]_a^1 = \infty. Evaluating the second part, limb[(lnx)22e]1b=\lim_{b \to \infty} \left[\frac{(\ln x)^2}{2e}\right]_1^b = \infty. Since both parts diverge to infinity, the total area is infinite.