Solveeit Logo

Question

Question: Evaluate the integral $$ \int_{-1}^{1}\int_{0}^{\pi/2} x \sin \sqrt{y} \,dy\,dx $$...

Evaluate the integral 110π/2xsinydydx\int_{-1}^{1}\int_{0}^{\pi/2} x \sin \sqrt{y} \,dy\,dx

Answer

0

Explanation

Solution

The integral can be separated into two independent integrals: (11xdx)(0π/2sinydy)\left(\int_{-1}^{1} x \,dx\right) \left(\int_{0}^{\pi/2} \sin \sqrt{y} \,dy\right) The first integral, 11xdx\int_{-1}^{1} x \,dx, evaluates to 0 because xx is an odd function integrated over a symmetric interval [1,1][-1, 1]. Since one of the factors is 0, the entire double integral is 0.