Solveeit Logo

Question

Question: 1 + \cos 20^\circ + \cos 30^\circ + \cos 50^\circ =...

1 + \cos 20^\circ + \cos 30^\circ + \cos 50^\circ =

A

4 \cos 10^\circ \cos 15^\circ \cos 25^\circ

B

4 \cos 10^\circ \cos 20^\circ \cos 50^\circ

C

4 \sin 10^\circ \sin 15^\circ \sin 25^\circ

D

4 \sin 10^\circ \sin 20^\circ \sin 50^\circ

Answer

4 \cos 10^\circ \cos 15^\circ \cos 25^\circ

Explanation

Solution

Here's how to solve the problem:

  1. Rewrite using double-angle identity:

    1+cos20=2cos2101 + \cos20^\circ = 2\cos^2 10^\circ

  2. Apply sum-to-product identity:

    cos30+cos50=2cos(30+502)cos(30502)=2cos40cos10\cos30^\circ + \cos50^\circ = 2\cos\left(\frac{30^\circ+50^\circ}{2}\right)\cos\left(\frac{30^\circ-50^\circ}{2}\right) = 2\cos40^\circ \cos10^\circ

  3. Combine the terms:

    2cos210+2cos40cos10=2cos10(cos10+cos40)2\cos^2 10^\circ + 2\cos40^\circ\cos10^\circ = 2\cos10^\circ\left(\cos10^\circ+\cos40^\circ\right)

  4. Apply sum-to-product identity again:

    cos10+cos40=2cos(10+402)cos(10402)=2cos25cos15\cos10^\circ+\cos40^\circ = 2\cos\left(\frac{10^\circ+40^\circ}{2}\right)\cos\left(\frac{10^\circ-40^\circ}{2}\right) = 2\cos25^\circ \cos15^\circ

  5. Substitute back to get the final expression:

    2cos10×2cos25cos15=4cos10cos15cos252\cos10^\circ \times 2\cos25^\circ\cos15^\circ = 4\cos10^\circ\cos15^\circ\cos25^\circ

Therefore, the answer is 4cos10cos15cos254\cos10^\circ\cos15^\circ\cos25^\circ.