Question
Question: 1 + \cos 20^\circ + \cos 30^\circ + \cos 50^\circ =...
1 + \cos 20^\circ + \cos 30^\circ + \cos 50^\circ =

A
4 \cos 10^\circ \cos 15^\circ \cos 25^\circ
B
4 \cos 10^\circ \cos 20^\circ \cos 50^\circ
C
4 \sin 10^\circ \sin 15^\circ \sin 25^\circ
D
4 \sin 10^\circ \sin 20^\circ \sin 50^\circ
Answer
4 \cos 10^\circ \cos 15^\circ \cos 25^\circ
Explanation
Solution
Here's how to solve the problem:
-
Rewrite using double-angle identity:
1+cos20∘=2cos210∘
-
Apply sum-to-product identity:
cos30∘+cos50∘=2cos(230∘+50∘)cos(230∘−50∘)=2cos40∘cos10∘
-
Combine the terms:
2cos210∘+2cos40∘cos10∘=2cos10∘(cos10∘+cos40∘)
-
Apply sum-to-product identity again:
cos10∘+cos40∘=2cos(210∘+40∘)cos(210∘−40∘)=2cos25∘cos15∘
-
Substitute back to get the final expression:
2cos10∘×2cos25∘cos15∘=4cos10∘cos15∘cos25∘
Therefore, the answer is 4cos10∘cos15∘cos25∘.