Solveeit Logo

Question

Question: Considering only the principal values of the inverse trigonometric functions, the value of $\frac{3}...

Considering only the principal values of the inverse trigonometric functions, the value of 32cos122+π2+14sin122π2+π2+tan12π\frac{3}{2}cos^{-1}\sqrt{\frac{2}{2+\pi^2}}+\frac{1}{4}sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2}+tan^{-1}\frac{\sqrt{2}}{\pi} is ___.

Answer

3π4\frac{3\pi}{4}

Explanation

Solution

Solution:

Let

A=cos122+π2.A = \cos^{-1}\sqrt{\frac{2}{2+\pi^2}}.

Then

cosA=22+π2,sinA=122+π2=π2+π2,andtanA=sinAcosA=π2.\cos A = \sqrt{\frac{2}{2+\pi^2}},\quad \sin A = \sqrt{1-\frac{2}{2+\pi^2}} = \frac{\pi}{\sqrt{2+\pi^2}},\quad \text{and} \quad \tan A = \frac{\sin A}{\cos A} = \frac{\pi}{\sqrt{2}}.

Thus,

A=tan1π2.A = \tan^{-1}\frac{\pi}{\sqrt{2}}.

Next, notice that

sin2A=2sinAcosA=2π22+π2.\sin 2A = 2\sin A \cos A = \frac{2\pi\sqrt{2}}{2+\pi^2}.

The second term in the expression is

14sin122π2+π2.\frac{1}{4}\sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2}.

Since

22π2+π2=sin2A,\frac{2\sqrt{2}\pi}{2+\pi^2} = \sin 2A,

and because 2A2A (when not in [π2,π2][-\frac{\pi}{2},\frac{\pi}{2}]) has a principal value given by sin1(sin2A)=π2A\sin^{-1}(\sin2A)=\pi-2A (provided 2A2A lies between π2\frac{\pi}{2} and π\pi), we have

sin122π2+π2=π2A.\sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2} = \pi-2A.

Thus, the given expression becomes:

32A+14(π2A)+tan12π.\frac{3}{2}A + \frac{1}{4}(\pi-2A) + \tan^{-1}\frac{\sqrt{2}}{\pi}.

Simplify:

32A12A+π4+tan12π=A+π4+tan12π.\frac{3}{2}A - \frac{1}{2}A + \frac{\pi}{4} + \tan^{-1}\frac{\sqrt{2}}{\pi} = A + \frac{\pi}{4} + \tan^{-1}\frac{\sqrt{2}}{\pi}.

Now, substitute back A=tan1π2A=\tan^{-1}\frac{\pi}{\sqrt{2}}:

tan1π2+tan12π+π4.\tan^{-1}\frac{\pi}{\sqrt{2}}+\tan^{-1}\frac{\sqrt{2}}{\pi}+\frac{\pi}{4}.

Using the sum formula for arctan, when

tan1x+tan1(1x)=π2(for x>0),\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \quad (\text{for } x>0),

with x=π2x=\frac{\pi}{\sqrt{2}} and 1x=2π\frac{1}{x}=\frac{\sqrt{2}}{\pi}, we find:

tan1π2+tan12π=π2.\tan^{-1}\frac{\pi}{\sqrt{2}}+\tan^{-1}\frac{\sqrt{2}}{\pi} = \frac{\pi}{2}.

Thus, the entire expression simplifies to:

π2+π4=3π4.\frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}.

Explanation (minimal):

  1. Set A=cos122+π2A=\cos^{-1}\sqrt{\frac{2}{2+\pi^2}} and compute sinA\sin A to get sin2A=2π22+π2\sin 2A = \frac{2\pi\sqrt{2}}{2+\pi^2}.
  2. Replace sin122π2+π2\sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2} by π2A\pi-2A (using the principal value).
  3. Simplify the expression to A+π4+tan12πA+\frac{\pi}{4}+\tan^{-1}\frac{\sqrt{2}}{\pi} and write A=tan1π2A=\tan^{-1}\frac{\pi}{\sqrt{2}}.
  4. Use the arctan sum formula to obtain tan1π2+tan12π=π2\tan^{-1}\frac{\pi}{\sqrt{2}}+\tan^{-1}\frac{\sqrt{2}}{\pi}=\frac{\pi}{2}.
  5. Final answer: 3π4\frac{3\pi}{4}.