Solveeit Logo

Question

Question: Calculate the potential of Iron electrode in which the concentration of Fe2+ ion is 0.01 M. (2024) ...

Calculate the potential of Iron electrode in which the concentration of Fe2+ ion is 0.01 M. (2024)

(E°Fe2+/Fe = 0.45 V at 298 K)

[Given: log 10 = 1]

Answer

EFe2+ / Fe = -0.509 V

Explanation

Solution

The problem requires calculating the electrode potential of an Iron electrode under non-standard conditions using the Nernst equation.

1. Identify the half-reaction and number of electrons (n): The reduction half-reaction for the iron electrode is: Fe2+(aq)+2eFe(s)\text{Fe}^{2+}(aq) + 2e^- \rightarrow \text{Fe}(s) From this, the number of electrons involved, n=2n = 2.

2. Identify the given values:

  • Concentration of Fe²⁺, [Fe2+]=0.01 M[\text{Fe}^{2+}] = 0.01 \text{ M}
  • Standard electrode potential, EFe2+/Fe=0.45 VE^\circ_{\text{Fe}^{2+}/\text{Fe}} = 0.45 \text{ V} (as stated in the question). However, the provided solution uses 0.45 V-0.45 \text{ V}. Standard reduction potential for Fe2+/Fe\text{Fe}^{2+}/\text{Fe} is typically negative (around 0.44 V-0.44 \text{ V} to 0.45 V-0.45 \text{ V}). Given that the provided solution proceeds with 0.45 V-0.45 \text{ V} and arrives at a chemically plausible result, we will assume EFe2+/Fe=0.45 VE^\circ_{\text{Fe}^{2+}/\text{Fe}} = -0.45 \text{ V} for consistency with the provided solution's calculation.
  • Temperature, T=298 KT = 298 \text{ K} (implied by the use of 0.059 in the Nernst equation).
  • Given: log10=1\log 10 = 1.

3. Apply the Nernst equation: The Nernst equation for a reduction half-reaction Mn+(aq)+neM(s)M^{n+}(aq) + ne^- \rightarrow M(s) at 298 K is: EMn+/M=EMn+/M0.059nlog1[Mn+]E_{M^{n+}/M} = E^\circ_{M^{n+}/M} - \frac{0.059}{n} \log \frac{1}{[M^{n+}]}

Substitute the values for the Iron electrode: EFe2+/Fe=EFe2+/Fe0.0592log1[Fe2+]E_{\text{Fe}^{2+}/\text{Fe}} = E^\circ_{\text{Fe}^{2+}/\text{Fe}} - \frac{0.059}{2} \log \frac{1}{[\text{Fe}^{2+}]} EFe2+/Fe=0.45 V0.0592log10.01E_{\text{Fe}^{2+}/\text{Fe}} = -0.45 \text{ V} - \frac{0.059}{2} \log \frac{1}{0.01}

4. Calculate the logarithmic term: log10.01=log11100=log100\log \frac{1}{0.01} = \log \frac{1}{\frac{1}{100}} = \log 100 Since 100=102100 = 10^2, we have: log100=log(102)=2log10\log 100 = \log (10^2) = 2 \log 10 Given log10=1\log 10 = 1, log100=2×1=2\log 100 = 2 \times 1 = 2

5. Complete the calculation: Substitute the value of the logarithmic term back into the Nernst equation: EFe2+/Fe=0.45 V0.0592×2E_{\text{Fe}^{2+}/\text{Fe}} = -0.45 \text{ V} - \frac{0.059}{2} \times 2 EFe2+/Fe=0.45 V0.059 VE_{\text{Fe}^{2+}/\text{Fe}} = -0.45 \text{ V} - 0.059 \text{ V} EFe2+/Fe=0.509 VE_{\text{Fe}^{2+}/\text{Fe}} = -0.509 \text{ V}

The calculated potential of the Iron electrode is 0.509 V-0.509 \text{ V}.

Explanation of the solution:

The electrode potential for the Iron electrode is calculated using the Nernst equation.

  1. Reaction: Fe2+(aq)+2eFe(s)\text{Fe}^{2+}(aq) + 2e^- \rightarrow \text{Fe}(s). Here, n=2n=2.
  2. Nernst Equation: E=E0.059nlog1[Fe2+]E = E^\circ - \frac{0.059}{n} \log \frac{1}{[\text{Fe}^{2+}]} at 298 K.
  3. Substitute values: E=0.45 VE^\circ = -0.45 \text{ V} (assuming this value, consistent with the provided solution's calculation), n=2n=2, [Fe2+]=0.01 M[\text{Fe}^{2+}] = 0.01 \text{ M}. E=0.450.0592log10.01E = -0.45 - \frac{0.059}{2} \log \frac{1}{0.01}
  4. Calculate log term: log10.01=log100=2\log \frac{1}{0.01} = \log 100 = 2.
  5. Final Calculation: E=0.450.0592×2=0.450.059=0.509 VE = -0.45 - \frac{0.059}{2} \times 2 = -0.45 - 0.059 = -0.509 \text{ V}.

Answer:

The potential of the Iron electrode is -0.509 V.