Solveeit Logo

Question

Question: An electron gun on a space probe starts emitting an electron beam into the space. Electrons in the b...

An electron gun on a space probe starts emitting an electron beam into the space. Electrons in the beam have energy W=9.0×104W = 9.0 \times 10^4 eV and the beam is equivalent to electric current I=1.0I = 1.0 mA. If the space probe is a metal sphere of radius r=1.0r = 1.0 m, find electric field strength at the surface of the space probe 1.0 min after starting the electron gun. Charge on an electron is e=1.6×1019e = -1.6 \times 10^{-19} C.

Answer

5.4 x 10^8 N/C

Explanation

Solution

  1. Calculate the total charge accumulated: The current II is the rate of charge leaving the space probe. Since electrons are emitted, the probe loses negative charge and thus acquires a positive charge. Given current I=1.0 mA=1.0×103 AI = 1.0 \text{ mA} = 1.0 \times 10^{-3} \text{ A}. Given time t=1.0 min=60 st = 1.0 \text{ min} = 60 \text{ s}. The total charge QQ accumulated on the probe is: Q=I×tQ = I \times t Q=(1.0×103 A)×(60 s)Q = (1.0 \times 10^{-3} \text{ A}) \times (60 \text{ s}) Q=6.0×102 CQ = 6.0 \times 10^{-2} \text{ C}

  2. Calculate the electric field strength at the surface: The space probe is a metal sphere of radius r=1.0 mr = 1.0 \text{ m}. For a charged conducting sphere, the electric field strength at its surface is given by: E=kQr2E = \frac{kQ}{r^2} where k=14πϵ0=9×109 N m2/C2k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2 (Coulomb's constant). E=(9×109 N m2/C2)×(6.0×102 C)(1.0 m)2E = \frac{(9 \times 10^9 \text{ N m}^2/\text{C}^2) \times (6.0 \times 10^{-2} \text{ C})}{(1.0 \text{ m})^2} E=(9×6.0)×10(92) N/CE = (9 \times 6.0) \times 10^{(9-2)} \text{ N/C} E=54×107 N/CE = 54 \times 10^7 \text{ N/C} E=5.4×108 N/CE = 5.4 \times 10^8 \text{ N/C}