Solveeit Logo

Question

Question: A man wants to reach point B on the opposite bank of a river flowing at a speed 4 m/s starting from ...

A man wants to reach point B on the opposite bank of a river flowing at a speed 4 m/s starting from A as shown in figure. What minimum speed relative to water should the man have so that he can reach point B directly by swimming?

A

45\frac{4}{5} m/s

B

125\frac{12}{5} m/s

C

165\frac{16}{5} m/s

D

235\frac{23}{5} m/s

Answer

165\frac{16}{5} m/s

Explanation

Solution

To solve this problem, we need to understand the concept of relative velocity. The velocity of the man relative to the ground (vg\vec{v}_g) is the vector sum of his velocity relative to the water (vm\vec{v}_m) and the velocity of the river (vr\vec{v}_r).

So, vg=vm+vr\vec{v}_g = \vec{v}_m + \vec{v}_r.

Let's set up a coordinate system:

  • Let the starting point A be the origin (0, 0).
  • The river flows in the positive x-direction. So, the velocity of the river is vr=4i^\vec{v}_r = 4 \hat{i} m/s.
  • The width of the river is 40 m, so the opposite bank is at y = 40 m.
  • Point B is 30 m upstream from the point directly opposite A. This means point B is at coordinates (-30, 40) m.

The man wants to reach point B directly from A. This implies that his resultant velocity relative to the ground (vg\vec{v}_g) must be directed along the line segment AB.

The displacement vector from A to B is AB=(300)i^+(400)j^=30i^+40j^\vec{AB} = (-30 - 0) \hat{i} + (40 - 0) \hat{j} = -30 \hat{i} + 40 \hat{j}.

The direction of vg\vec{v}_g must be parallel to AB\vec{AB}.

So, vg=kAB\vec{v}_g = k \vec{AB} for some scalar k>0k > 0.

Let vg=vgxi^+vgyj^\vec{v}_g = v_{gx} \hat{i} + v_{gy} \hat{j}.

The ratio of components of vg\vec{v}_g must be equal to the ratio of components of AB\vec{AB}:

vgyvgx=4030=43\frac{v_{gy}}{v_{gx}} = \frac{40}{-30} = -\frac{4}{3}.

So, 3vgy=4vgx3 v_{gy} = -4 v_{gx}, or 4vgx+3vgy=04 v_{gx} + 3 v_{gy} = 0.

Let the velocity of the man relative to water be vm=vmxi^+vmyj^\vec{v}_m = v_{mx} \hat{i} + v_{my} \hat{j}.

We want to find the minimum magnitude of vm\vec{v}_m, i.e., minimize vm=vmx2+vmy2v_m = \sqrt{v_{mx}^2 + v_{my}^2}.

Using the relative velocity equation: vg=vm+vr\vec{v}_g = \vec{v}_m + \vec{v}_r.

Substituting the components:

(vgxi^+vgyj^)=(vmxi^+vmyj^)+(4i^)(v_{gx} \hat{i} + v_{gy} \hat{j}) = (v_{mx} \hat{i} + v_{my} \hat{j}) + (4 \hat{i})

Equating the components:

vgx=vmx+4v_{gx} = v_{mx} + 4 (Equation 1)

vgy=vmyv_{gy} = v_{my} (Equation 2)

Substitute vgxv_{gx} and vgyv_{gy} into the direction condition 4vgx+3vgy=04 v_{gx} + 3 v_{gy} = 0:

4(vmx+4)+3vmy=04 (v_{mx} + 4) + 3 v_{my} = 0

4vmx+16+3vmy=04 v_{mx} + 16 + 3 v_{my} = 0

4vmx+3vmy=164 v_{mx} + 3 v_{my} = -16 (Equation 3)

We need to minimize vm=vmx2+vmy2v_m = \sqrt{v_{mx}^2 + v_{my}^2}. This is equivalent to minimizing vm2=vmx2+vmy2v_m^2 = v_{mx}^2 + v_{my}^2.

From Equation 3, vmy=43vmx163v_{my} = -\frac{4}{3} v_{mx} - \frac{16}{3}.

Substitute this into the expression for vm2v_m^2:

vm2=vmx2+(43vmx163)2v_m^2 = v_{mx}^2 + \left(-\frac{4}{3} v_{mx} - \frac{16}{3}\right)^2

vm2=vmx2+19(4vmx+16)2v_m^2 = v_{mx}^2 + \frac{1}{9} (4 v_{mx} + 16)^2

vm2=vmx2+19(16vmx2+128vmx+256)v_m^2 = v_{mx}^2 + \frac{1}{9} (16 v_{mx}^2 + 128 v_{mx} + 256)

vm2=9vmx2+16vmx2+128vmx+2569v_m^2 = \frac{9 v_{mx}^2 + 16 v_{mx}^2 + 128 v_{mx} + 256}{9}

vm2=25vmx2+128vmx+2569v_m^2 = \frac{25 v_{mx}^2 + 128 v_{mx} + 256}{9}

To find the minimum value of vm2v_m^2, we can find the vertex of this quadratic expression in vmxv_{mx}. For a quadratic ax2+bx+cax^2 + bx + c, the minimum (or maximum) occurs at x=b/(2a)x = -b/(2a).

Here, a=25/9a = 25/9, b=128/9b = 128/9.

So, vmxv_{mx} for minimum vmv_m is:

vmx=128/92×(25/9)=12850=6425v_{mx} = -\frac{128/9}{2 \times (25/9)} = -\frac{128}{50} = -\frac{64}{25} m/s.

Now, substitute this value of vmxv_{mx} back into Equation 3 to find vmyv_{my}:

4(6425)+3vmy=164 \left(-\frac{64}{25}\right) + 3 v_{my} = -16

25625+3vmy=16-\frac{256}{25} + 3 v_{my} = -16

3vmy=16+256253 v_{my} = -16 + \frac{256}{25}

3vmy=400+256253 v_{my} = \frac{-400 + 256}{25}

3vmy=144253 v_{my} = -\frac{144}{25}

vmy=1443×25=4825v_{my} = -\frac{144}{3 \times 25} = -\frac{48}{25} m/s.

Finally, calculate the minimum speed relative to water, vmv_m:

vm=vmx2+vmy2v_m = \sqrt{v_{mx}^2 + v_{my}^2}

vm=(6425)2+(4825)2v_m = \sqrt{\left(-\frac{64}{25}\right)^2 + \left(-\frac{48}{25}\right)^2}

vm=4096625+2304625v_m = \sqrt{\frac{4096}{625} + \frac{2304}{625}}

vm=4096+2304625v_m = \sqrt{\frac{4096 + 2304}{625}}

vm=6400625v_m = \sqrt{\frac{6400}{625}}

vm=6400625=8025v_m = \frac{\sqrt{6400}}{\sqrt{625}} = \frac{80}{25}

vm=16×55×5=165v_m = \frac{16 \times 5}{5 \times 5} = \frac{16}{5} m/s.