Question
Physics Question on Angular velocity and its relation with linear velocity
- A child stands at the centre of a turntable with his two arms outstretched. The turntable is set rotating with an angular speed of 40 rev/min. How much is the angular speed of the child if he folds his hands back and thereby reduces his moment of inertia to 2/5 times the initial value ? Assume that the turntable rotates without friction.
- Show that the child’s new kinetic energy of rotation is more than the initial kinetic energy of rotation. How do you account for this increase in kinetic energy?
a. 100 rev/min
Initial angular velocity, ω1= 40rev/min
Final angular velocity = ω2
The moment of inertia of the boy with stretched hands = I1
The moment of inertia of the boy with folded hands = I2
The two moments of inertia are related as :
I2 = 52I1
Since no external force acts on the boy, the angular momentum L is a constant. Hence, for the two situations, we can write :
I2ω2= I1ω1
ω2 = I2I1ω1
=52I1I1×40 = 25×40
= 100rev/min
(b) Final K.E. = 2.5 Initial K.E.
Final kinetic rotation, EF = 21I2ω22
Initial kinetic rotation, EI= 21I1ω12
EIEF = 21I1ω1221I2ω22
= \frac{2}{5}$$\frac{\text I(100)^2}{\text I_1(40)^2}
= 52×40×40100×100
= 25 = 2.5
∴ EF = 2.5 E1
The increase in the rotational kinetic energy is attributed to the internal energy of the boy.