Solveeit Logo

Question

Question: (4\cot^2 9^\circ -1)(4\cos^2 27^\circ -1)(4\cos^2 81^\circ -1)(4\cos^2 243^\circ -1)...

(4\cot^2 9^\circ -1)(4\cos^2 27^\circ -1)(4\cos^2 81^\circ -1)(4\cos^2 243^\circ -1)

A

1

B

-1

C

2

D

None of these

Answer

1

Explanation

Solution

The problem asks for the value of the expression (4cot291)(4cos2271)(4cos2811)(4cos22431)(4\cot^2 9^\circ -1)(4\cos^2 27^\circ -1)(4\cos^2 81^\circ -1)(4\cos^2 243^\circ -1).

Observation and Assumption:

The first term in the given expression is (4cot291)(4\cot^2 9^\circ -1). However, the subsequent terms are of the form (4cos2θ1)(4\cos^2 \theta -1). A very similar problem (provided as "similar question") has all terms of the form (4cos2θ1)(4\cos^2 \theta -1). It is highly probable that there is a typo in the first term of the given question, and it should be (4cos291)(4\cos^2 9^\circ -1) instead of (4cot291)(4\cot^2 9^\circ -1). If we proceed with (4cot291)(4\cot^2 9^\circ -1), the expression becomes significantly more complex and does not follow the elegant pattern observed in such problems. Therefore, we will assume the first term is (4cos291)(4\cos^2 9^\circ -1).

Core Identity:

We use the trigonometric identity: 4cos2θ1=sin3θsinθ4\cos^2\theta - 1 = \frac{\sin 3\theta}{\sin \theta}

Proof of the Identity:

We know that sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin\theta - 4\sin^3\theta. Dividing by sinθ\sin\theta (assuming sinθ0\sin\theta \neq 0): sin3θsinθ=3sinθ4sin3θsinθ=34sin2θ\frac{\sin 3\theta}{\sin \theta} = \frac{3\sin\theta - 4\sin^3\theta}{\sin\theta} = 3 - 4\sin^2\theta Using the identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta: 34(1cos2θ)=34+4cos2θ=4cos2θ13 - 4(1 - \cos^2\theta) = 3 - 4 + 4\cos^2\theta = 4\cos^2\theta - 1. Thus, the identity 4cos2θ1=sin3θsinθ4\cos^2\theta - 1 = \frac{\sin 3\theta}{\sin \theta} is verified.

Applying the Identity to Each Term:

Now, let's apply this identity to each term in the product, assuming the corrected first term:

  1. For θ=9\theta = 9^\circ: 4cos291=sin(3×9)sin9=sin27sin94\cos^2 9^\circ - 1 = \frac{\sin(3 \times 9^\circ)}{\sin 9^\circ} = \frac{\sin 27^\circ}{\sin 9^\circ}

  2. For θ=27\theta = 27^\circ: 4cos2271=sin(3×27)sin27=sin81sin274\cos^2 27^\circ - 1 = \frac{\sin(3 \times 27^\circ)}{\sin 27^\circ} = \frac{\sin 81^\circ}{\sin 27^\circ}

  3. For θ=81\theta = 81^\circ: 4cos2811=sin(3×81)sin81=sin243sin814\cos^2 81^\circ - 1 = \frac{\sin(3 \times 81^\circ)}{\sin 81^\circ} = \frac{\sin 243^\circ}{\sin 81^\circ}

  4. For θ=243\theta = 243^\circ: 4cos22431=sin(3×243)sin243=sin729sin2434\cos^2 243^\circ - 1 = \frac{\sin(3 \times 243^\circ)}{\sin 243^\circ} = \frac{\sin 729^\circ}{\sin 243^\circ}

Multiplying the Terms (Telescoping Product):

Let P be the product of these terms: P=(sin27sin9)×(sin81sin27)×(sin243sin81)×(sin729sin243)P = \left(\frac{\sin 27^\circ}{\sin 9^\circ}\right) \times \left(\frac{\sin 81^\circ}{\sin 27^\circ}\right) \times \left(\frac{\sin 243^\circ}{\sin 81^\circ}\right) \times \left(\frac{\sin 729^\circ}{\sin 243^\circ}\right) Notice that this is a telescoping product, where the numerator of each term cancels with the denominator of the next term: P=sin729sin9P = \frac{\sin 729^\circ}{\sin 9^\circ}

Simplifying the Result:

We need to simplify sin729\sin 729^\circ. We know that sin(n360+θ)=sinθ\sin(n \cdot 360^\circ + \theta) = \sin\theta for any integer nn. 729=2×360+9=720+9729^\circ = 2 \times 360^\circ + 9^\circ = 720^\circ + 9^\circ. So, sin729=sin(720+9)=sin9\sin 729^\circ = \sin(720^\circ + 9^\circ) = \sin 9^\circ.

Substituting this back into the expression for P: P=sin9sin9=1P = \frac{\sin 9^\circ}{\sin 9^\circ} = 1

The final answer is 1\boxed{1}.