Solveeit Logo

Question

Question: \[(1 + 3)\log_{e}3 + \frac{1 + 3^{2}}{2!}(\log_{e}3)^{2} + \frac{1 + 3^{3}}{3!}(\log_{e}3)^{3} + ......

(1+3)loge3+1+322!(loge3)2+1+333!(loge3)3+.....=(1 + 3)\log_{e}3 + \frac{1 + 3^{2}}{2!}(\log_{e}3)^{2} + \frac{1 + 3^{3}}{3!}(\log_{e}3)^{3} + .....\infty =

A

28

B

30

C

25

D

0

Answer

28

Explanation

Solution

log1012\log_{10}\frac{1}{2}

logen!\log_{e}n!

loge12\log_{e}\frac{1}{2}.