Solveeit Logo

Question

Mathematics Question on Sequence and series

1+3+5+7+...+29+30+31+32+...+60=1 + 3 + 5 + 7 + ... + 29 + 30 +31 + 32 + ... + 60 =

A

1611

B

1620

C

1609

D

1600

Answer

1620

Explanation

Solution

1+3+5+7+...+29+30+31+32+...+601 + 3 + 5 + 7 + ... + 29 + 30 + 31 + 32 + ... + 60
=[1+3+5+7+...+29]+(30+31+...+60]= [1 + 3 + 5 + 7 + ... + 29] + (30 + 31 + ... + 60]
1st1^{st} A.P. 2nd 2^{nd} A.P.
1st1^{st} A.P. has first term= 1,
common difference = 2 and last term = 29
2nd2^{nd} A.P. has first term = 30,
common difference = 1 and last term = 60
1+3+...+60=1 + 3 + ... + 60 = Sum of 1st1^{st} A.P. + Sum of 2nd2^{nd} A.P.
=n12(1+29)+n2n(30+60)= \frac{n_1}{2} (1+29) + \frac{n_2}{n} (30+60)
=n12(30)+n2n(90)=15n1+45n2= \frac{n_1}{2} (30) + \frac{n_2}{n} (90) = 15 n_1 +45 n_2
We know that l=a+(n1)dl = a +(n -1) d
29=1+(n11)22(n11)=2829 = 1 + (n_1 -1)2 \Rightarrow 2(n_1 - 1) = 28
n11=14n1=15n_1 -1 = 14 \Rightarrow n_1 = 15
and 60=30+(n21)(1)60 =30 + (n_2 - 1) (1)
n21=30n2=31\Rightarrow\:\:\: n_2 -1 = 30 \Rightarrow n_2 = 31
1+3+5+....+29+30+31+....60\therefore\:\:\:\: 1 + 3 + 5 + .... + 29 + 30 + 31 + .... 60
=15×15+45×31=225+1395=1620= 15 \times 15 + 45 \times 31 = 225 + 1395 = 1620