Solveeit Logo

Question

Question: The values of $\alpha$, for which $\begin{array}{ccc} 1 & \frac{3}{2} & \alpha +3 \\ 1 & 2 & \alpha ...

The values of α\alpha, for which 132α+312α+132α+33α+10\begin{array}{ccc} 1 & \frac{3}{2} & \alpha +3 \\ 1 & 2 & \alpha + \frac{1}{3} \\ 2\alpha +3 & 3\alpha +1 & 0 \end{array} = 0, lie in the interval [JEE (Main)-2024]

A

(-2, 1)

B

(0, 3)

C

(-3, 0)

D

(-32\frac{3}{2},32\frac{3}{2})

Answer

No real values of α\alpha satisfy the equation.

Explanation

Solution

The given determinant is:

D=132α+312α+132α+33α+10D = \begin{vmatrix} 1 & \frac{3}{2} & \alpha +3 \\ 1 & 2 & \alpha + \frac{1}{3} \\ 2\alpha +3 & 3\alpha +1 & 0 \end{vmatrix}

We need to find the values of α\alpha for which D=0D = 0. Expanding the determinant along the first row:

D=12α+133α+10321α+132α+30+(α+3)122α+33α+1D = 1 \begin{vmatrix} 2 & \alpha + \frac{1}{3} \\ 3\alpha +1 & 0 \end{vmatrix} - \frac{3}{2} \begin{vmatrix} 1 & \alpha + \frac{1}{3} \\ 2\alpha +3 & 0 \end{vmatrix} + (\alpha +3) \begin{vmatrix} 1 & 2 \\ 2\alpha +3 & 3\alpha +1 \end{vmatrix}

Calculate each minor:

  1. 1×[2(0)(α+13)(3α+1)]=(α+13)(3α+1)=(3α+1)231 \times [2(0) - (\alpha + \frac{1}{3})(3\alpha +1)] = -(\alpha + \frac{1}{3})(3\alpha +1) = -\frac{(3\alpha+1)^2}{3}
  2. 32×[1(0)(α+13)(2α+3)]=32(α+13)(2α+3)=12(3α+1)(2α+3)-\frac{3}{2} \times [1(0) - (\alpha + \frac{1}{3})(2\alpha +3)] = \frac{3}{2} (\alpha + \frac{1}{3})(2\alpha +3) = \frac{1}{2}(3\alpha+1)(2\alpha+3)
  3. (α+3)×[1(3α+1)2(2α+3)]=(α+3)[3α+14α6]=(α+3)(α5)=(α+3)(α+5)(\alpha +3) \times [1(3\alpha +1) - 2(2\alpha +3)] = (\alpha +3) [3\alpha +1 - 4\alpha - 6] = (\alpha +3) (-\alpha - 5) = -(\alpha +3)(\alpha + 5)

Now, sum these terms and set D=0D=0:

(3α+1)23+12(3α+1)(2α+3)(α+3)(α+5)=0-\frac{(3\alpha+1)^2}{3} + \frac{1}{2}(3\alpha+1)(2\alpha +3) - (\alpha +3)(\alpha + 5) = 0

Expanding and simplifying:

α292α836=0-\alpha^2 - \frac{9}{2}\alpha - \frac{83}{6} = 0

Multiply by -6 to clear denominators:

6α2+27α+83=06\alpha^2 + 27\alpha + 83 = 0

To find the values of α\alpha, we calculate the discriminant Δ=b24ac\Delta = b^2 - 4ac:

Δ=(27)24(6)(83)=7291992=1263\Delta = (27)^2 - 4(6)(83) = 729 - 1992 = -1263

Since the discriminant Δ<0\Delta < 0, the quadratic equation has no real roots.

Therefore, there are no real values of α\alpha for which the determinant is zero.