Question
Mathematics Question on integral
∫01x2+4x+35x2dx
Answer
I=∫01x2+4x+35x2dx
Dividindg5x2byx2+4x+3,weobtain
I=∫125−x2+4x+320x+15dx
=∫125dx−∫12x2+4x+320x+15dx
=[5x]12−∫12x2+4x+320x+15dx
I=5−I1,whereI=∫12x2+4x+320x+15...(1)
Consider,I1=∫12x2+4x+820x+15dx
Let20x+15=Adxd(x2+4x+3)+B
=2Ax+(4A+B)
Equating the coefficients of x and constant term,we obtain
A=10andB=−25
⇒I1=10∫12x2+4x+32x+4dx−25∫12dxx2+4x+3
Letx2+4x+3=t
⇒(2x+4)dx=dt
⇒I1=10∫tdt−25∫(x+2)2−12dx
=10logt−25[21log(x+2+1x+2−1)]
=[10log(x2+4x+3)]21−25[21logx+3)x+1]12
=[10log5+10log3−10log4−10log2]−225[log3−log5−log2+log4]
=[10+225]log5+[−10−225]log4+[10−225]log3+[−10+225]log2
=245log5−245log4−25log3+25log2
=245log45−25log23
SubstitutingthevalueofI1in(1),weobtain
I=5−[245log45−25log2]3
=5−25[9log45−log23]