Solveeit Logo

Question

Mathematics Question on integral

015x2x2+4x+3dx∫^1_0 \frac{5x^2}{x^2+4x+3}dx

Answer

I=015x2x2+4x+3dx∫^1_0 \frac{5x^2}{x^2+4x+3}dx

Dividindg5x2byx2+4x+3,weobtainDividindg 5x^2 by x^2+4x+3,we obtain

I=12520x+15x2+4x+3dxI=∫^2_1{5-\frac{20x+15}{x^2+4x+3}}dx

=125dx1220x+15x2+4x+3dx=∫^2_1 5dx-∫^2_1\frac{20x+15}{x2+4x+3}dx

=[5x]121220x+15x2+4x+3dx=[5x]^2_1-∫^2_1\frac{20x+15}{x^2+4x+3} dx

I=5I1,whereI=1220x+15x2+4x+3...(1)I=5-I1,where I=∫^2_1\frac{20x+15}{x2+4x+3}...(1)

Consider,I1=1220x+15x2+4x+8dxConsider,I1=∫^2_1\frac{20x+15}{x^2+4x+8}dx

Let20x+15=Addx(x2+4x+3)+BLet 20x+15=A\frac{d}{dx}(x^2+4x+3)+B

=2Ax+(4A+B)=2Ax+(4A+B)

Equating the coefficients of x and constant term,we obtain

A=10andB=25A=10 and B=-25

I1=10122x+4x2+4x+3dx2512dxx2+4x+3⇒I1=10 ∫^2_1\frac{ 2x+4}{x2+4x+3}dx-25 ∫^2_1{dx}{x^2+4x+3}

Letx2+4x+3=tLet x^2+4x+3=t

(2x+4)dx=dt⇒(2x+4)dx=dt

I1=10dtt25dx(x+2)212⇒I_1=10∫\frac{dt}{t}-25∫\frac{dx}{(x+2)^2-1^2}

=10logt25[12log(x+21x+2+1)]=10log t-25[\frac{1}{2}log(\frac{x+2-1}{x+2+1})]

=[10log(x2+4x+3)]2125[12logx+1x+3)]12=[10log(x2+4x+3)]21-25[\frac{1}{2}log\frac{x+1}{x+3)}]^2_1

=[10log5+10log310log410log2]252[log3log5log2+log4]=[10log5+10log3-10log4-10log2]-\frac{25}{2}[log3-log5-log2+log4]

=[10+252]log5+[10252]log4+[10252]log3+[10+252]log2=[10+\frac{25}{2}]log5+[-10-\frac{25}{2}]log4+[10-\frac{25}{2}]log3+[-10+\frac{25}{2}]log2

=452log5452log452log3+52log2=\frac{45}{2}log5-\frac{45}{2}log4-\frac{5}{2}log3+\frac{5}{2}log2

=452log5452log32=\frac{45}{2}log\frac{5}{4}-\frac{5}{2}log\frac{3}{2}

SubstitutingthevalueofI1in(1),weobtainSubstituting the value of I1 in(1),we obtain

I=5[452log5452log32]I=5-[\frac{45}{2}log\frac{5}{4}-\frac{5}{2}log\frac{3}{2]}

=552[9log54log32]=5-\frac{5}{2}[9log\frac{5}{4}-log\frac{3}{2}]