Solveeit Logo

Question

Mathematics Question on Integral Calculus

01xx24dx=?∫^1_0\dfrac{x}{x^2-4}dx=?

A

2π6\dfrac{-2\pi}{6}

B

12ln(43)\dfrac{1}{2}ln(\dfrac{4}{3})

C

ln(32)ln(\dfrac{3}{2})

D

ln(32)ln(\dfrac{√3}{2})

E

ln(32)ln(\dfrac{3}{√2})

Answer

12ln(43)\dfrac{1}{2}ln(\dfrac{4}{3})

Explanation

Solution

The correct option is (A): 12ln(43)\dfrac{1}{2}ln(\dfrac{4}{3}).
01xx24dx∫^1_0\dfrac{x}{x^2-4}dx
To solve the above expression
first take, x24=tx^{2}-4= t
Now derivate both the sides w.r.t xx
we get,
2xdx=dt2x dx= dt
xdx=12dtxdx=\dfrac{1}{2}dt
By substituting the term in the parent expression we can write
1201dtt\dfrac{1}{2}∫^1_0\dfrac{dt}{t}
=12ln(t)01=\dfrac{1}{2}ln(t)|_0^1
=12ln((x2)4)01=\dfrac{1}{2}ln((x^{2})-4)|_0^1
by applying the limits we get,
=12[ln(14)ln(04)]=\dfrac{1}{2}[ln(1-4)-ln(0-4)]
=12ln(43)=\dfrac{1}{2}ln(\dfrac{4}{3})