Solveeit Logo

Question

Question: \(1 - \frac{\sin^{3}\theta}{\sin\theta + \cos\theta} - \frac{\cos^{3}\theta}{\sin\theta + \cos\theta...

1sin3θsinθ+cosθcos3θsinθ+cosθ1 - \frac{\sin^{3}\theta}{\sin\theta + \cos\theta} - \frac{\cos^{3}\theta}{\sin\theta + \cos\theta}is equal to

A

sin2θ\sin^{2}\theta

B

cos2θ\cos^{2}\theta

C

sinθcosθ\sin\theta\cos\theta

D

sin2θ\sin^{2}\theta

Answer

sinθcosθ\sin\theta\cos\theta

Explanation

Solution

We can write the given expression as

1sin3θ+cos3θsinθ+cosθ=1(sinθ+cosθ)(sin2θ+cos2θsinθcosθ)sinθ+cosθ1 - \frac{\sin^{3}\theta + \cos^{3}\theta}{\sin\theta + \cos\theta} = 1 - \frac{\left( \sin\theta + \cos\theta \right)\left( \sin^{2}\theta + \cos^{2}\theta - \sin\theta\cos\theta \right)}{\sin\theta + \cos\theta}

=1- (1-sinθcosθ)

= sinθcosθ