Solveeit Logo

Question

Question: The solution of the differential equation $\frac{dy}{dx} = tan(\frac{y}{x})+\frac{y}{x}$ is [2017]...

The solution of the differential equation dydx=tan(yx)+yx\frac{dy}{dx} = tan(\frac{y}{x})+\frac{y}{x} is [2017]

A

cos(yx)=Cxcos(\frac{y}{x})=Cx

B

sin(yx)=Cxsin(\frac{y}{x})=Cx

C

cos(yx)=Cycos(\frac{y}{x})=Cy

D

sin(yx)=Cysin(\frac{y}{x})=Cy

Answer

sin(yx)=Cx\sin\left(\frac{y}{x}\right) = Cx

Explanation

Solution

Given the differential equation

dydx=tan(yx)+yx\frac{dy}{dx} = \tan\left(\frac{y}{x}\right) + \frac{y}{x}

substitute v=yxv = \frac{y}{x}, so that y=vxy = vx and dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}. Then,

v+xdvdx=tan(v)+v    xdvdx=tan(v).v + x\frac{dv}{dx} = \tan(v) + v \implies x\frac{dv}{dx} = \tan(v).

Separate the variables:

dvtan(v)=dxx.\frac{dv}{\tan(v)} = \frac{dx}{x}.

Since 1tan(v)=cot(v)\frac{1}{\tan(v)} = \cot(v), we have

cot(v)dv=dxx.\cot(v) dv = \frac{dx}{x}.

Integrating both sides,

cot(v)dv=dxxlnsin(v)=lnx+C,\int \cot(v) dv = \int \frac{dx}{x} \quad \Longrightarrow \quad \ln|\sin(v)| = \ln|x| + C,

or

lnsinvx=C.\ln\left|\frac{\sin v}{x}\right| = C.

Exponentiating,

sinvx=C1sin(yx)=Cx,\frac{\sin v}{x} = C_1 \quad \Longrightarrow \quad \sin\left(\frac{y}{x}\right) = Cx,

where CC is an arbitrary constant.