Solveeit Logo

Question

Question: Let the area of the triangle formed by the lines $x+2=y-1=z, \frac{x-3}{5} = \frac{y}{-1} = \frac{z-...

Let the area of the triangle formed by the lines x+2=y1=z,x35=y1=z11x+2=y-1=z, \frac{x-3}{5} = \frac{y}{-1} = \frac{z-1}{1} and x3=y33=z21\frac{x}{-3} = \frac{y-3}{3} = \frac{z-2}{1} be A. Then A2^2 is equal to _______.

Answer

56

Explanation

Solution

The vertices of the triangle are the pairwise intersection points of the given lines. Line 1: r1=(2,1,0)+t1(1,1,1)\vec{r}_1 = (-2, 1, 0) + t_1(1, 1, 1). Line 2: r2=(3,0,1)+t2(5,1,1)\vec{r}_2 = (3, 0, 1) + t_2(5, -1, 1). Line 3: r3=(0,3,2)+t3(3,3,1)\vec{r}_3 = (0, 3, 2) + t_3(-3, 3, 1).

Intersection of Line 1 and Line 2: V12=(2,1,0)V_{12} = (-2, 1, 0). Intersection of Line 1 and Line 3: V13=(0,3,2)V_{13} = (0, 3, 2). Intersection of Line 2 and Line 3: V23=(3,0,1)V_{23} = (3, 0, 1).

Vectors representing two sides of the triangle: u=V13V12=(2,2,2)\vec{u} = V_{13} - V_{12} = (2, 2, 2). v=V23V12=(5,1,1)\vec{v} = V_{23} - V_{12} = (5, -1, 1).

Cross product: u×v=(4,8,12)\vec{u} \times \vec{v} = (4, 8, -12). Magnitude of cross product: u×v=42+82+(12)2=16+64+144=224||\vec{u} \times \vec{v}|| = \sqrt{4^2 + 8^2 + (-12)^2} = \sqrt{16 + 64 + 144} = \sqrt{224}.

Area of triangle A=12u×v=12224A = \frac{1}{2} ||\vec{u} \times \vec{v}|| = \frac{1}{2} \sqrt{224}. A2=(12224)2=14×224=56A^2 = \left(\frac{1}{2} \sqrt{224}\right)^2 = \frac{1}{4} \times 224 = 56.