Question
Question: Let the area of the triangle formed by the lines $x+2=y-1=z, \frac{x-3}{5} = \frac{y}{-1} = \frac{z-...
Let the area of the triangle formed by the lines x+2=y−1=z,5x−3=−1y=1z−1 and −3x=3y−3=1z−2 be A. Then A2 is equal to _______.

Answer
56
Explanation
Solution
The vertices of the triangle are the pairwise intersection points of the given lines. Line 1: r1=(−2,1,0)+t1(1,1,1). Line 2: r2=(3,0,1)+t2(5,−1,1). Line 3: r3=(0,3,2)+t3(−3,3,1).
Intersection of Line 1 and Line 2: V12=(−2,1,0). Intersection of Line 1 and Line 3: V13=(0,3,2). Intersection of Line 2 and Line 3: V23=(3,0,1).
Vectors representing two sides of the triangle: u=V13−V12=(2,2,2). v=V23−V12=(5,−1,1).
Cross product: u×v=(4,8,−12). Magnitude of cross product: ∣∣u×v∣∣=42+82+(−12)2=16+64+144=224.
Area of triangle A=21∣∣u×v∣∣=21224. A2=(21224)2=41×224=56.
