Solveeit Logo

Question

Question: Solve for $\alpha$: $0.42 \alpha = \left( \sin^2 \alpha - 0.07 \sin 2\alpha \right) \left( \frac{2 ...

Solve for α\alpha:

0.42α=(sin2α0.07sin2α)(2sin2α0.14sin2α2sin2α0.14cos2α)20.42 \alpha = \left( \sin^2 \alpha - 0.07 \sin 2\alpha \right) \left( \frac{2 \sin^2 \alpha - 0.14 \sin 2\alpha}{2 \sin 2\alpha - 0.14 \cos 2\alpha} \right)^2

Answer

α=0\alpha = 0

Explanation

Solution

Let k=0.07k = 0.07, then the equation becomes:

6kα=(sin2αksin2α)(2sin2α2ksin2α2sin2α2kcos2α)26k \alpha = \left( \sin^2 \alpha - k \sin 2\alpha \right) \left( \frac{2 \sin^2 \alpha - 2k \sin 2\alpha}{2 \sin 2\alpha - 2k \cos 2\alpha} \right)^2

Let A=sin2αksin2αA = \sin^2 \alpha - k \sin 2\alpha. Then A=dAdα=sin2α2kcos2αA' = \frac{dA}{d\alpha} = \sin 2\alpha - 2k \cos 2\alpha.

The equation can be written as:

6kα=A(2AA)2=4A3(A)26k \alpha = A \left( \frac{2A}{A'} \right)^2 = \frac{4A^3}{(A')^2}

6kα(A)2=4A36k \alpha (A')^2 = 4A^3

Taking the square root:

6kαA=±2A3/2\sqrt{6k \alpha} A' = \pm 2A^{3/2}

6kαdAdα=±2A3/2\sqrt{6k \alpha} \frac{dA}{d\alpha} = \pm 2A^{3/2}

Separating variables:

dAA3/2=±26kαdα\frac{dA}{A^{3/2}} = \pm \frac{2}{\sqrt{6k \alpha}} d\alpha

Integrating both sides:

A3/2dA=±26kα1/2dα\int A^{-3/2} dA = \pm \frac{2}{\sqrt{6k}} \int \alpha^{-1/2} d\alpha

2A1/2=±46kα1/2+C-2A^{-1/2} = \pm \frac{4}{\sqrt{6k}} \alpha^{1/2} + C

2A=±46kα+C-\frac{2}{\sqrt{A}} = \pm \frac{4}{\sqrt{6k}} \sqrt{\alpha} + C

If α=0\alpha = 0, then:

0.42×0=(sin200.07sin0)(2sin200.14sin02sin00.14cos0)20.42 \times 0 = (\sin^2 0 - 0.07 \sin 0) \left( \frac{2 \sin^2 0 - 0.14 \sin 0}{2 \sin 0 - 0.14 \cos 0} \right)^2

0=(00)(0000.14)2=00 = (0 - 0) \left( \frac{0 - 0}{0 - 0.14} \right)^2 = 0

Therefore, α=0\alpha = 0 is a solution.