Question
Question: Solve for $\alpha$: $0.42 \alpha = \left( \sin^2 \alpha - 0.07 \sin 2\alpha \right) \left( \frac{2 ...
Solve for α:
0.42α=(sin2α−0.07sin2α)(2sin2α−0.14cos2α2sin2α−0.14sin2α)2

Answer
α=0
Explanation
Solution
Let k=0.07, then the equation becomes:
6kα=(sin2α−ksin2α)(2sin2α−2kcos2α2sin2α−2ksin2α)2
Let A=sin2α−ksin2α. Then A′=dαdA=sin2α−2kcos2α.
The equation can be written as:
6kα=A(A′2A)2=(A′)24A3
6kα(A′)2=4A3
Taking the square root:
6kαA′=±2A3/2
6kαdαdA=±2A3/2
Separating variables:
A3/2dA=±6kα2dα
Integrating both sides:
∫A−3/2dA=±6k2∫α−1/2dα
−2A−1/2=±6k4α1/2+C
−A2=±6k4α+C
If α=0, then:
0.42×0=(sin20−0.07sin0)(2sin0−0.14cos02sin20−0.14sin0)2
0=(0−0)(0−0.140−0)2=0
Therefore, α=0 is a solution.