Solveeit Logo

Question

Question: A particle performing S.H.M. starts from equilibrium position and its time period is 12 second. Afte...

A particle performing S.H.M. starts from equilibrium position and its time period is 12 second. After 2 seconds its velocity is π\pim/s. Amplitude of the oscillation is [sin30=cos60=0.5,sin60=cos30=3/2]\left[sin 30^\circ = cos 60^\circ = 0.5, sin 60^\circ = cos 30^\circ = \sqrt{3}/2\right]

A

6 m

B

12 m

C

12312\sqrt{3} m

D

636\sqrt{3} m

Answer

12 m

Explanation

Solution

Given the SHM position as

x(t)=Asin(ωt)x(t)=A\sin (\omega t)

with time period T=12T=12 s, we find

ω=2πT=2π12=π6rad/s.\omega = \frac{2\pi}{T}=\frac{2\pi}{12}=\frac{\pi}{6}\,\text{rad/s}.

The velocity is

v(t)=Aωcos(ωt).v(t)=A\omega\cos (\omega t).

At t=2t=2 s, the velocity is given as π\pi m/s:

v(2)=A(π6)cos(π6×2)=A(π6)cos(π3).v(2)=A\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\times2\right)=A\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{3}\right).

Since cos(π3)=12\cos\left(\frac{\pi}{3}\right)=\frac{1}{2},

v(2)=A(π6)×12=Aπ12.v(2)=A\left(\frac{\pi}{6}\right)\times\frac{1}{2}=\frac{A\pi}{12}.

Equate to the given velocity:

Aπ12=πA=12m.\frac{A\pi}{12}=\pi \quad \Longrightarrow \quad A=12\,\text{m}.