Solveeit Logo

Question

Question: A small particle carrying a negative charge of $1.6 \times 10^{-19} C$ is suspended in equilibrium b...

A small particle carrying a negative charge of 1.6×1019C1.6 \times 10^{-19} C is suspended in equilibrium between two horizontal metal plates 8 cm apart having a potential difference of 980 V across them. The mass of the particle is [g=9.8m/s2g = 9.8 m/s^2]

A

2×1016kg2 \times 10^{-16} kg

B

2.2×1016kg2.2 \times 10^{-16} kg

C

20×1016kg20 \times 10^{-16} kg

D

4×1016kg4 \times 10^{-16} kg

Answer

A 2×1016kg2 \times 10^{-16} kg

Explanation

Solution

Solution:

  1. The electric field between the plates is

    E=Vd=980V0.08m=1.225×104V/m.E = \frac{V}{d} = \frac{980\,\text{V}}{0.08\,\text{m}} = 1.225 \times 10^4\,\text{V/m}.
  2. For equilibrium, the electric force (which acts upward on the negative charge) must balance the gravitational force:

    qE=mg.|q|E = mg.
  3. Substituting the given values:

    m=qEg=(1.6×1019C)(1.225×104V/m)9.8m/s2.m = \frac{|q|E}{g} = \frac{(1.6 \times 10^{-19}\,\text{C})(1.225 \times 10^4\,\text{V/m})}{9.8\,\text{m/s}^2}.
  4. Calculate the numerator:

    1.6×1019×1.225×104=1.96×1015N.1.6 \times 10^{-19} \times 1.225 \times 10^4 = 1.96 \times 10^{-15}\,\text{N}.
  5. Now,

    m=1.96×1015N9.8m/s2=2.0×1016kg.m = \frac{1.96 \times 10^{-15}\,\text{N}}{9.8\,\text{m/s}^2} = 2.0 \times 10^{-16}\,\text{kg}.

Answer: Option A: 2×1016kg2 \times 10^{-16}\,\text{kg}


Minimal Explanation:
Equate gravitational force mgmg to the magnitude of the electric force qEqE. Compute E=VdE = \frac{V}{d} and substitute to find mm.