Solveeit Logo

Question

Question: Let the latus rectum of the hyperbola, $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{...

Let the latus rectum of the hyperbola, x29y2b2=1\frac{x^2}{9}-\frac{y^2}{b^2}=1 subtend an angle of π3\frac{\pi}{3} at the centre of the hyperbola. If b2b^2 is equal to lm(1+n)\frac{l}{m}(1+\sqrt{n}), where ll and mm are co-prime numbers, then l2+m2+n2l^2 + m^2 + n^2 is equal to

A

182

B

178

C

180

D

176

Answer

182

Explanation

Solution

The latus rectum of the hyperbola x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 has endpoints at (ae,±b2a)(ae, \pm \frac{b^2}{a}). The angle subtended by the latus rectum at the center (0,0)(0,0) is 2ϕ2\phi, where tanϕ=b2/aae=b2a2e\tan \phi = \frac{b^2/a}{ae} = \frac{b^2}{a^2e}. Given this angle is π3\frac{\pi}{3}, we have 2ϕ=π32\phi = \frac{\pi}{3}, so ϕ=π6\phi = \frac{\pi}{6}. Thus, tan(π6)=13=b2a2e\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}} = \frac{b^2}{a^2e}. This implies a2e=b23a^2e = b^2\sqrt{3}. Squaring both sides, we get a4e2=3b4a^4e^2 = 3b^4. Using the eccentricity formula e2=1+b2a2e^2 = 1 + \frac{b^2}{a^2}, we substitute it into the equation: a4(1+b2a2)=3b4a^4(1 + \frac{b^2}{a^2}) = 3b^4, which simplifies to a4+a2b2=3b4a^4 + a^2b^2 = 3b^4. Given a2=9a^2 = 9, we have 92+9b2=3b49^2 + 9b^2 = 3b^4, so 81+9b2=3b481 + 9b^2 = 3b^4. Dividing by 3 gives b43b227=0b^4 - 3b^2 - 27 = 0. Let X=b2X = b^2. The quadratic equation becomes X23X27=0X^2 - 3X - 27 = 0. Solving for XX using the quadratic formula, X=3±(3)24(1)(27)2=3±9+1082=3±1172X = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(-27)}}{2} = \frac{3 \pm \sqrt{9+108}}{2} = \frac{3 \pm \sqrt{117}}{2}. Since b2b^2 must be positive, b2=3+1172b^2 = \frac{3 + \sqrt{117}}{2}. Simplifying 117=9×13=313\sqrt{117} = \sqrt{9 \times 13} = 3\sqrt{13}, we get b2=3+3132=32(1+13)b^2 = \frac{3 + 3\sqrt{13}}{2} = \frac{3}{2}(1+\sqrt{13}). Comparing this with b2=lm(1+n)b^2 = \frac{l}{m}(1+\sqrt{n}), we find l=3l=3, m=2m=2, and n=13n=13. ll and mm are co-prime. Finally, we calculate l2+m2+n2=32+22+132=9+4+169=182l^2 + m^2 + n^2 = 3^2 + 2^2 + 13^2 = 9 + 4 + 169 = 182.