Solveeit Logo

Question

Question: $ax^2+bx+c=0$ with roots $\alpha$ and $\beta$. Then $(\frac{1}{a\alpha+b}+\frac{1}{a\beta+b})=$ ...

ax2+bx+c=0ax^2+bx+c=0 with roots α\alpha and β\beta. Then (1aα+b+1aβ+b)=(\frac{1}{a\alpha+b}+\frac{1}{a\beta+b})=

A

cab\frac{c}{ab}

B

bac\frac{b}{ac}

C

abc\frac{a}{bc}

D

None

Answer

bac\frac{b}{ac}

Explanation

Solution

Given the quadratic equation ax2+bx+c=0ax^2+bx+c=0 with roots α\alpha and β\beta.

From aα2+bα+c=0a\alpha^2+b\alpha+c=0, we have aα2+bα=ca\alpha^2+b\alpha = -c. Dividing by α\alpha (assuming α0\alpha \neq 0, which is true if c0c \neq 0), we get aα+b=c/αa\alpha+b = -c/\alpha.

Similarly, from aβ2+bβ+c=0a\beta^2+b\beta+c=0, we have aβ+b=c/βa\beta+b = -c/\beta.

The expression to evaluate is (1aα+b+1aβ+b)(\frac{1}{a\alpha+b}+\frac{1}{a\beta+b}).

Substitute the derived terms: (1c/α+1c/β)=(αcβc)=α+βc(\frac{1}{-c/\alpha} + \frac{1}{-c/\beta}) = (-\frac{\alpha}{c} - \frac{\beta}{c}) = -\frac{\alpha+\beta}{c}.

Using Vieta's formulas, the sum of the roots is α+β=b/a\alpha+\beta = -b/a.

Substitute this value into the expression: b/ac=b/ac=bac-\frac{-b/a}{c} = \frac{b/a}{c} = \frac{b}{ac}.