Question
Question: If for certain $x$, $3 \cos x \neq 2 \sin x$, then the general solution of, $\sin^2 x - \cos 2x = 2 ...
If for certain x, 3cosx=2sinx, then the general solution of, sin2x−cos2x=2−sin2x, is

A
(2n+1)2π,n∈Z
B
(2n+1)4π,n∈Z
C
nπ+(−1)n3π,n∈Z
D
2nπ+1,n∈Z
Answer
(2n+1)2π,n∈Z
Explanation
Solution
The equation is sin2x−cos2x=2−sin2x.
Using the identity cos2x=1−2sin2x, the equation becomes:
sin2x−(1−2sin2x)=2−sin2x 3sin2x−1=2−sin2x 3sin2x+sin2x−3=0
Testing the options:
Option A: x=(2n+1)2π,n∈Z
When x=2π: sin2π=1, cosπ=−1, sin22π=1 sin2x−cos2x=1−(−1)=2 sin2x=sinπ=0, so 2−sin2x=2 The equality holds.
Verify the condition 3cosx=2sinx:
At x=2(2n+1)π, cosx=0 and sinx=±1. Thus, 3cosx=0=±2=2sinx.
Therefore, Option A satisfies the equation and the given condition.