Solveeit Logo

Question

Question: If for certain $x$, $3 \cos x \neq 2 \sin x$, then the general solution of, $\sin^2 x - \cos 2x = 2 ...

If for certain xx, 3cosx2sinx3 \cos x \neq 2 \sin x, then the general solution of, sin2xcos2x=2sin2x\sin^2 x - \cos 2x = 2 - \sin 2x, is

A

(2n+1)π2,nZ(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}

B

(2n+1)π4,nZ(2n+1)\frac{\pi}{4}, n \in \mathbb{Z}

C

nπ+(1)nπ3,nZn\pi + (-1)^n\frac{\pi}{3}, n \in \mathbb{Z}

D

nπ2+1,nZ\frac{n\pi}{2} + 1, n \in \mathbb{Z}

Answer

(2n+1)π2,nZ(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}

Explanation

Solution

The equation is sin2xcos2x=2sin2x\sin^2 x - \cos 2x = 2 - \sin 2x.

Using the identity cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x, the equation becomes:

sin2x(12sin2x)=2sin2x\sin^2 x - (1 - 2\sin^2 x) = 2 - \sin 2x 3sin2x1=2sin2x3\sin^2 x - 1 = 2 - \sin 2x 3sin2x+sin2x3=03\sin^2 x + \sin 2x - 3 = 0

Testing the options:

Option A: x=(2n+1)π2,nZx = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}

When x=π2x = \frac{\pi}{2}: sinπ2=1\sin \frac{\pi}{2} = 1, cosπ=1\cos \pi = -1, sin2π2=1\sin^2 \frac{\pi}{2} = 1 sin2xcos2x=1(1)=2\sin^2 x - \cos 2x = 1 - (-1) = 2 sin2x=sinπ=0\sin 2x = \sin \pi = 0, so 2sin2x=22 - \sin 2x = 2 The equality holds.

Verify the condition 3cosx2sinx3\cos x \neq 2\sin x:

At x=(2n+1)π2x = \frac{(2n+1)\pi}{2}, cosx=0\cos x = 0 and sinx=±1\sin x = \pm 1. Thus, 3cosx=0±2=2sinx3\cos x = 0 \neq \pm 2 = 2\sin x.

Therefore, Option A satisfies the equation and the given condition.