Solveeit Logo

Question

Question: The magnetic flux near the axis and inside the air core solenoid of length 80 cm carrying current 'I...

The magnetic flux near the axis and inside the air core solenoid of length 80 cm carrying current 'I' is 1.57×1061.57 \times 10^{-6} Wb. Its magnetic moment will be [cross-sectional area of a solenoid is very small as compared to its length, μ0=4π×107\mu_0 = 4\pi \times 10^{-7} SI unit] (π=3.14\pi = 3.14)

A

0.25 Am2Am^2

B

0.50 Am2Am^2

C

1 Am2Am^2

D

1.2 Am2Am^2

Answer

1 Am2Am^2

Explanation

Solution

The magnetic flux through the solenoid is given by

Φ=BA\Phi = BA,

and the magnetic field inside an air-core solenoid is

B=μ0NLIB = \mu_0 \frac{N}{L} I.

Thus,

Φ=μ0NLIA\Phi = \mu_0 \frac{N}{L} I A.

Notice that the solenoid’s magnetic moment is

m=NIAm = NIA.

Express mm in terms of Φ\Phi:

m=NIA=Lμ0Φm = NIA = \frac{L}{\mu_0}\Phi.

Substitute the given values (L=80cm=0.80mL = 80\,\text{cm}=0.80\,\text{m}, μ0=4π×107H/m\mu_0 = 4\pi\times10^{-7}\,\text{H/m}, and Φ=1.57×106Wb\Phi = 1.57 \times 10^{-6}\,\text{Wb}):

m=0.804π×107×(1.57×106)m = \frac{0.80}{4\pi \times 10^{-7}} \times (1.57 \times 10^{-6}).

Since 4π×1071.256×1064\pi \times 10^{-7} \approx 1.256 \times 10^{-6}, we have:

m=0.801.256×106×(1.57×106)=0.80×1.57×1061.256×106m = \frac{0.80}{1.256 \times 10^{-6}} \times (1.57 \times 10^{-6}) = \frac{0.80 \times 1.57 \times 10^{-6}}{1.256 \times 10^{-6}}.

The 10610^{-6} cancels out:

m=0.80×1.571.2561.2561.256=1.00A\cdotpm2m = \frac{0.80 \times 1.57}{1.256} \approx \frac{1.256}{1.256} = 1.00\,\text{A·m}^2.

Thus, the magnetic moment is 1A\cdotpm21\,\text{A·m}^2.