Solveeit Logo

Question

Question: 0. $\int sin^4x dx$...

  1. sin4xdx\int sin^4x dx
Answer

3x8sin2x4+sin4x32+C\frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C

Explanation

Solution

The problem asks to evaluate the integral sin4xdx\int \sin^4x \, dx.

To integrate even powers of sine or cosine, we use power-reducing trigonometric identities. We know the identity: sin2x=1cos2x2\sin^2x = \frac{1 - \cos 2x}{2}

Now, we can express sin4x\sin^4x as (sin2x)2(\sin^2x)^2: sin4x=(1cos2x2)2\sin^4x = \left(\frac{1 - \cos 2x}{2}\right)^2 =14(1cos2x)2= \frac{1}{4}(1 - \cos 2x)^2 Expand the squared term: =14(12cos2x+cos22x)= \frac{1}{4}(1 - 2\cos 2x + \cos^2 2x) We have a cos22x\cos^2 2x term, which is also an even power. We need to reduce its power using another identity: cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2} Here, θ=2x\theta = 2x, so: cos22x=1+cos(22x)2=1+cos4x2\cos^2 2x = \frac{1 + \cos(2 \cdot 2x)}{2} = \frac{1 + \cos 4x}{2} Substitute this back into the expression for sin4x\sin^4x: sin4x=14(12cos2x+1+cos4x2)\sin^4x = \frac{1}{4}\left(1 - 2\cos 2x + \frac{1 + \cos 4x}{2}\right) To combine the terms inside the parenthesis, find a common denominator: =14(224cos2x2+1+cos4x2)= \frac{1}{4}\left(\frac{2}{2} - \frac{4\cos 2x}{2} + \frac{1 + \cos 4x}{2}\right) =14(24cos2x+1+cos4x2)= \frac{1}{4}\left(\frac{2 - 4\cos 2x + 1 + \cos 4x}{2}\right) =18(34cos2x+cos4x)= \frac{1}{8}(3 - 4\cos 2x + \cos 4x) Now, we can integrate this simplified expression term by term: sin4xdx=18(34cos2x+cos4x)dx\int \sin^4x \, dx = \int \frac{1}{8}(3 - 4\cos 2x + \cos 4x) \, dx =18(34cos2x+cos4x)dx= \frac{1}{8} \int (3 - 4\cos 2x + \cos 4x) \, dx Integrate each term:

  1. 3dx=3x\int 3 \, dx = 3x
  2. 4cos2xdx=4(sin2x2)=2sin2x\int -4\cos 2x \, dx = -4 \left(\frac{\sin 2x}{2}\right) = -2\sin 2x
  3. cos4xdx=sin4x4\int \cos 4x \, dx = \frac{\sin 4x}{4}

Combine these results and add the constant of integration, C: sin4xdx=18(3x2sin2x+sin4x4)+C\int \sin^4x \, dx = \frac{1}{8} \left( 3x - 2\sin 2x + \frac{\sin 4x}{4} \right) + C Distribute the 18\frac{1}{8}: =3x82sin2x8+sin4x32+C= \frac{3x}{8} - \frac{2\sin 2x}{8} + \frac{\sin 4x}{32} + C =3x8sin2x4+sin4x32+C= \frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C

The final answer is 3x8sin2x4+sin4x32+C\boxed{\frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C}.