Solveeit Logo

Question

Question: $$0 = \frac{15x^2 - 8x}{x-1} - 3x+1$$...

0=15x28xx13x+10 = \frac{15x^2 - 8x}{x-1} - 3x+1

Answer

The solutions are x=12x = \frac{1}{2} and x=16x = -\frac{1}{6}.

Explanation

Solution

The given equation is 0=15x28xx13x+10 = \frac{15x^2 - 8x}{x-1} - 3x+1.

First, we need to identify the domain of the variable xx. The denominator cannot be zero, so x10x-1 \neq 0, which means x1x \neq 1.

Rearrange the equation to combine the terms: 15x28xx1=3x1\frac{15x^2 - 8x}{x-1} = 3x-1

Multiply both sides by (x1)(x-1), assuming x1x \neq 1: 15x28x=(3x1)(x1)15x^2 - 8x = (3x-1)(x-1)

Expand the right side: (3x1)(x1)=3x(x1)1(x1)=3x23xx+1=3x24x+1(3x-1)(x-1) = 3x(x-1) - 1(x-1) = 3x^2 - 3x - x + 1 = 3x^2 - 4x + 1

Substitute this back into the equation: 15x28x=3x24x+115x^2 - 8x = 3x^2 - 4x + 1

Move all terms to one side to form a quadratic equation: 15x23x28x+4x1=015x^2 - 3x^2 - 8x + 4x - 1 = 0 12x24x1=012x^2 - 4x - 1 = 0

This is a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, with a=12a=12, b=4b=-4, and c=1c=-1. We can solve this using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values of aa, bb, and cc: x=(4)±(4)24(12)(1)2(12)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(12)(-1)}}{2(12)} x=4±16+4824x = \frac{4 \pm \sqrt{16 + 48}}{24} x=4±6424x = \frac{4 \pm \sqrt{64}}{24} x=4±824x = \frac{4 \pm 8}{24}

This gives two possible solutions for xx: x1=4+824=1224=12x_1 = \frac{4 + 8}{24} = \frac{12}{24} = \frac{1}{2} x2=4824=424=16x_2 = \frac{4 - 8}{24} = \frac{-4}{24} = -\frac{1}{6}

Finally, we must check if these solutions satisfy the domain restriction x1x \neq 1. For x1=12x_1 = \frac{1}{2}, 121\frac{1}{2} \neq 1. So, x=12x = \frac{1}{2} is a valid solution. For x2=16x_2 = -\frac{1}{6}, 161-\frac{1}{6} \neq 1. So, x=16x = -\frac{1}{6} is a valid solution.

Both solutions are valid.