Solveeit Logo

Question

Question: 0.5g of fuming \({{{H}}_2}{{S}}{{{O}}_4}\) (oleum) is diluted with water. This solution is completel...

0.5g of fuming H2SO4{{{H}}_2}{{S}}{{{O}}_4} (oleum) is diluted with water. This solution is completely neutralized by 26.7mL{{26}}{{.7mL}} of 0.4N{{0}}{{.4N}} NaOH{{NaOH}}. Find the percentage of free SO3{{S}}{{{O}}_3} in the sample solution.

Explanation

Solution

This problem can be solved on the basis of mole concept. Before we calculate the percentage of free sulfur trioxide, we have to calculate three units of measurement, i.e. equivalent weight, total number of equivalents.

Complete step by step answer:
Oleum is also known as fuming sulfuric acid, i.e. it consists of sulfuric acid and free SO3{{S}}{{{O}}_3}.
It is given that the amount of oleum, mol=0.5g{{{m}}_{{{ol}}}} = 0.5{{g}}
Let xg{{xg}} be the mass of SO3{{S}}{{{O}}_3}, mSO3{{{m}}_{{{S}}{{{O}}_3}}} in the oleum. So we can say that the mass of sulfuric acid, mH2SO4=(0.5x)g{{{m}}_{{{{H}}_2}{{S}}{{{O}}_4}}} = \left( {0.5 - {{x}}} \right){{g}}
The molecular weight of SO3{{S}}{{{O}}_3}, MSO3=80g.mol1{{{M}}_{{{S}}{{{O}}_3}}} = 80{{g}}.{{mo}}{{{l}}^{ - 1}}
From the value of molecular weight, we can calculate the value of equivalent weight of SO3{{S}}{{{O}}_3}.
i.e. Equivalent weight of SO3{{S}}{{{O}}_3}, ESO3=MSO3V{{{E}}_{{{S}}{{{O}}_3}}} = \dfrac{{{{{M}}_{{{S}}{{{O}}_3}}}}}{{{V}}}, V{{V}} is the valency, i.e. V=2{{V = 2}}.
i.e. ESO3=802=40{{{E}}_{{{S}}{{{O}}_3}}} = \dfrac{{80}}{{{2}}} = 40
Similarly, we can calculate the equivalent weight of H2SO4{{{H}}_2}{{S}}{{{O}}_4}.
Molecular weight of H2SO4{{{H}}_2}{{S}}{{{O}}_4}, MH2SO4=98g.mol1{{{M}}_{{{{H}}_2}{{S}}{{{O}}_4}}} = 98{{g}}.{{mo}}{{{l}}^{ - 1}}
So equivalent weight of H2SO4{{{H}}_2}{{S}}{{{O}}_4}, EH2SO4=MH2SO4V=982=49{{{E}}_{{{{H}}_2}{{S}}{{{O}}_4}}} = \dfrac{{{{{M}}_{{{{H}}_2}{{S}}{{{O}}_4}}}}}{{{V}}} = \dfrac{{98}}{2} = 49
Now we can calculate the number of gram equivalents of SO3{{S}}{{{O}}_3}, NSO3=mSO3ESO3=x40{{{N}}_{{{S}}{{{O}}_3}}} = \dfrac{{{{{m}}_{{{S}}{{{O}}_3}}}}}{{{{{E}}_{{{S}}{{{O}}_3}}}}} = \dfrac{{{x}}}{{40}}
Similarly, number of gram equivalents of H2SO4{{{H}}_2}{{S}}{{{O}}_4}, NH2SO4=mH2SO4EH2SO4=0.5x49{{{N}}_{{{{H}}_2}{{S}}{{{O}}_4}}} = \dfrac{{{{{m}}_{{{{H}}_2}{{S}}{{{O}}_4}}}}}{{{{{E}}_{{{{H}}_2}{{S}}{{{O}}_4}}}}} = \dfrac{{{{0}}{{.5 - x}}}}{{49}}
The total number of gram equivalents is the sum of number of gram equivalents of SO3{{S}}{{{O}}_3} and H2SO4{{{H}}_2}{{S}}{{{O}}_4}.
Total number of gram equivalents, NT=x40+0.5x49{{{N}}_{{T}}} = \dfrac{{{x}}}{{40}} + \dfrac{{0.5 - {{x}}}}{{49}}
Normality of NaOH{{NaOH}}, NNaOH=0.4N=0.4eq.L1{{{N}}_{{{NaOH}}}} = 0.4{{N = 0}}{{.4eq}}{{.}}{{{L}}^{ - 1}}
1000mL{{1000mL}} will have 0.4eq0.4{{eq}} of NaOH{{NaOH}}. So 26.7mL{{26}}{{.7mL}} will have 0.41000×26.7=0.0107eq\dfrac{{0.4}}{{1000}} \times 26.7 = 0.0107{{eq}}
At equivalence point, the number of gram equivalents of NaOH{{NaOH}} will be equal to the number of gram equivalents of H2SO4{{{H}}_2}{{S}}{{{O}}_4}.
So 0.41000×26.7=x40+0.5x49\dfrac{{0.4}}{{1000}} \times 26.7{{ = }}\dfrac{{{x}}}{{40}} + \dfrac{{0.5 - {{x}}}}{{49}}
On simplification, we get
0.0107=49x+2040x1960=9x+2019600.0107 = \dfrac{{49{{x}} + 20 - 40{{x}}}}{{1960}} = \dfrac{{9{{x}} + 20}}{{1960}}
On further simplification,
0.0107×1960=9x+200.972=9xx=0.1080.0107 \times 1960 = 9{{x}} + 20 \Leftrightarrow 0.972 = 9{{x}} \Leftrightarrow {{x = 0}}{{.108}}
Thus we get the mass of SO3{{S}}{{{O}}_3}, mSO3=0.108g{{{m}}_{{{S}}{{{O}}_3}}} = 0.108{{g}}
Now we can calculate the percentage of free SO3{{S}}{{{O}}_3}, %=mSO3mol×100=0.1080.5×100=21.6%\% = \dfrac{{{{{m}}_{{{S}}{{{O}}_3}}}}}{{{{{m}}_{{{ol}}}}}} \times 100 = \dfrac{{0.108}}{{0.5}} \times 100 = 21.6\%

Thus the percentage of free SO3{{S}}{{{O}}_3} is 21.6%21.6\% .

Note: We have to concentrate the steps given properly. There is a chance to get confused in calculating the percentage. Since we need to calculate the percentage of free SO3{{S}}{{{O}}_3}, the equivalents of oleum will be different when we consider it in terms of mass.