Solveeit Logo

Question

Question: 0.5g of a mixture of \({{K}_{2}}C{{O}_{3}}\) and \(L{{i}_{2}}C{{O}_{3}}\) requires 30 mL of 0.25N HC...

0.5g of a mixture of K2CO3{{K}_{2}}C{{O}_{3}} and Li2CO3L{{i}_{2}}C{{O}_{3}} requires 30 mL of 0.25N HCl solution for neutralization. The percentage composition of the mixture is:
(A)- 96% K2CO3{{K}_{2}}C{{O}_{3}}, 4% Li2CO3L{{i}_{2}}C{{O}_{3}}
(B)- 4% K2CO3{{K}_{2}}C{{O}_{3}}, 96% Li2CO3L{{i}_{2}}C{{O}_{3}}
(C)- 48% K2CO3{{K}_{2}}C{{O}_{3}}, 52% Li2CO3L{{i}_{2}}C{{O}_{3}}
(D)- 52% K2CO3{{K}_{2}}C{{O}_{3}}, 48% Li2CO3L{{i}_{2}}C{{O}_{3}}

Explanation

Solution

Normality (N) is defined as the number of gram equivalents of a solute present per liter of the solution. It is given as:
Normality=weight of solute (in grams)equivalent weight×1000volume of solution (in mL)\text{Normality}=\dfrac{\text{weight of solute (in grams)}}{\text{equivalent weight}}\times \dfrac{1000}{\text{volume of solution (in mL)}}.

Equivalent weight of a compound is given as:
Equivalent weight = Molar massnumber of electrons lost or gained\text{Equivalent weight = }\dfrac{\text{Molar mass}}{\text{number of electrons lost or gained}}

Complete step by step answer:
We have been given that the sum of amount of K2CO3{{K}_{2}}C{{O}_{3}} and Li2CO3L{{i}_{2}}C{{O}_{3}} is equal to 0.5g. If the weight of K2CO3{{K}_{2}}C{{O}_{3}} in the mixture is taken to be ‘x’ g then, the amount of Li2CO3L{{i}_{2}}C{{O}_{3}} in the mixture will be (0.5-x) g.

Let us now calculate the equivalent weights of K2CO3{{K}_{2}}C{{O}_{3}} and Li2CO3L{{i}_{2}}C{{O}_{3}}.
Molar mass of K2CO3{{K}_{2}}C{{O}_{3}} is calculated as: 39×2+12+3×16=138gmol139\times 2+12+3\times 16=138gmo{{l}^{-1}}
Therefore, the equivalent weight of K2CO3{{K}_{2}}C{{O}_{3}} will be equal to

Equivalent weight of K2CO3 = 138gmol12=69g eq1\text{Equivalent weight of }{{\text{K}}_{2}}\text{C}{{\text{O}}_{3}}\text{ = }\dfrac{138gmo{{l}^{-1}}}{2}=69g\text{ }e{{q}^{-1}}
Molar mass of Li2CO3L{{i}_{2}}C{{O}_{3}} is calculated to be: 7×2+12+3×16=74gmol17\times 2+12+3\times 16=74g\,mo{{l}^{-1}}
Equivalent weight of Li2CO3L{{i}_{2}}C{{O}_{3}} can now be calculated by dividing its molar mass by 2.
Equivalent weight of Li2CO3 = 74gmol12=37g eq1\text{Equivalent weight of L}{{\text{i}}_{2}}\text{C}{{\text{O}}_{3}}\text{ = }\dfrac{74gmo{{l}^{-1}}}{2}=37g\text{ }e{{q}^{-1}}

According to the question, the mixture of K2CO3{{K}_{2}}C{{O}_{3}} and Li2CO3L{{i}_{2}}C{{O}_{3}} is completely neutralized by 30mL of 0.25N HCl. So, we can write for complete neutralization reaction
n equivalent of K2CO3{{K}_{2}}C{{O}_{3}} + n equivalent of Li2CO3L{{i}_{2}}C{{O}_{3}} = n equivalent of HCl

Now, let us find the number of equivalents of HCl.
We know that normality is given as:
Normality=weight of solute (in grams)equivalent weight×1000volume of solution (in mL)\text{Normality}=\dfrac{\text{weight of solute (in grams)}}{\text{equivalent weight}}\times \dfrac{1000}{\text{volume of solution (in mL)}}
And number of equivalent, n is equal to
n=weight of solute (in grams)equivalent weightn=\dfrac{\text{weight of solute (in grams)}}{\text{equivalent weight}}
So the above equation now becomes
Normality=n×1000volume of solution (in mL)\text{Normality}=n\times \dfrac{1000}{\text{volume of solution (in mL)}}
Or, we can rewrite it as
n=Normality×volume of solution (in mL)1000n=\text{Normality}\times \dfrac{\text{volume of solution (in mL)}}{1000}

Given, normality of HCl solution, N = 0.25 N
Volume of HCl required to neutralize K2CO3{{K}_{2}}C{{O}_{3}} and Li2CO3L{{i}_{2}}C{{O}_{3}}, V = 30 mL
Substituting the values of volume and normality of HCl, we can fine n equivalent of HCl as follows:
n=Normality×volume of solution (in mL)1000n=\text{Normality}\times \dfrac{\text{volume of solution (in mL)}}{1000}
n=0.25N×30mL1000=0.0075n=0.25N\times \dfrac{30mL}{1000}=0.0075

Number of equivalents of K2CO3{{K}_{2}}C{{O}_{3}} is calculated as:
n=weight of K2CO3equivalent weight of K2CO3=x69n=\dfrac{\text{weight of }{{K}_{2}}C{{O}_{3}}}{\text{equivalent weight of }{{K}_{2}}C{{O}_{3}}}=\dfrac{x}{69}
Similarly, number of equivalents of Li2CO3L{{i}_{2}}C{{O}_{3}} is calculated as:
n=weight of Li2CO3equivalent weight of Li2CO3n=\dfrac{\text{weight of }L{{i}_{2}}C{{O}_{3}}}{\text{equivalent weight of }L{{i}_{2}}C{{O}_{3}}}
n=0.5x37n=\dfrac{0.5-x}{37}

Now, putting the values of n in the equation given below, we obtain
n equivalent of K2CO3{{K}_{2}}C{{O}_{3}} + n equivalent of Li2CO3L{{i}_{2}}C{{O}_{3}} = n equivalent of HCl
x69+0.5x37=0.0075\dfrac{x}{69}+\dfrac{0.5-x}{37}=0.0075
37x+69(0.5x)69×37=0.0075\dfrac{37x+69(0.5-x)}{69\times 37}=0.0075
37x+34.569x=19.147537x+34.5-69x=19.1475
34.532x=19.147534.5-32x=19.1475
Solving the above equation for x, we get
15.3525=32x15.3525=32x
x=15.352532=0.48x=\dfrac{15.3525}{32}=0.48
The weight of K2CO3{{K}_{2}}C{{O}_{3}} in the mixture, x = 0.48g.
Thus, the amount of Li2CO3L{{i}_{2}}C{{O}_{3}}, (0.5-x) g will be (0.5-0.48) g = 0.2g.

Therefore, the percentage of K2CO3{{K}_{2}}C{{O}_{3}} in the mixture = weight of K2CO3(x)0.5g×100\dfrac{\text{weight of }{{\text{K}}_{2}}\text{C}{{\text{O}}_{3}}(x)}{0.5g}\times 100
Substituting the value of x in the above equation, we get = weight of K2CO3(x)0.5g×100\dfrac{\text{weight of }{{\text{K}}_{2}}\text{C}{{\text{O}}_{3}}(x)}{0.5g}\times 100
Percentage composition of Li2CO3L{{i}_{2}}C{{O}_{3}} will be (100-96) % = 4%.
So, the correct answer is “Option A”.

Note: Solve this question step by step to avoid errors. Carefully perform all the calculations. Do not get confused between the molar mass, equivalent weights and number of equivalents.