Solveeit Logo

Question

Physics Question on Thermodynamics terms

0.2 moles of an ideal gas is taken round the cycle ABC as shown in the figure. The path B ? C is an adiabatic process, A ? B is an isochoric process and C ? A is an isobaric process. The temerature at A and B are TA = 300 K and TB = 500 K and pressure at A is 1 atm and volume at A is 4.9 L. The volume at C is (Given : γ=CpCV=53,R=8.205?102\gamma=\frac{Cp}{C_{V}}=\frac{5}{3}, R = 8.205 ? 10^{-2} L atm mol1^{-1} K1,(32)2/5=0.81K^{-1}, \left(\frac{3}{2}\right)^{^{2/5}} =0.81

A

6.9 L

B

6.6 L

C

5.5 L

D

5.8 L

Answer

6.6 L

Explanation

Solution

For A ?? B, Isochoric process
PATA=PBTB\frac{P_{A}}{T_{A}}=\frac{P_{B}}{T_{B}}
PB=TBTAPAP_{B}=\frac{T_{B}}{T_{A}} P_{A}
PB=500300×1=53atm...(i)P_{B}=\frac{500}{300}\times1=\frac{5}{3}\, atm \quad\quad\quad\quad\quad ...\left(i\right)
For B \rightarrow C, Adiabatic process
TCγPCγ1=TBγPBγ1\therefore \frac{T^{\gamma}_{C}}{P_{C}^{\gamma-1}}=\frac{T^{\gamma}_{B}}{P_{B}^{\gamma-1}}
TC=(PCPB)γ1γ×TBT_{C}=\left(\frac{P_{C}}{P_{B}}\right)^{^{\frac{\gamma-1}{\gamma}}}\times T_{B}
=[15/3](5/3)1(5/3)×500(Usinig(i))=\left[\frac{1}{5/3}\right]^{^{\frac{\left(5/3\right)-1}{\left(5/3\right)}}}\times500 \quad\quad\quad\quad\quad\left(Usinig \left(i\right)\right)
=(35)2/5×500...(ii)=\left(\frac{3}{5}\right)^{2/5} \times500 \quad\quad\quad\quad\quad ...\left(ii\right)
For C \to A, Isobaric process
VCTC=VATA\therefore \frac{V_{C}}{T_{C}}=\frac{V_{A}}{T_{A}}
VC=VA×TCTA=4.9×(35)2/5×500×1300(Using(ii))V_{C}=V_{A}\times\frac{T_{C}}{T_{A}}=4.9\times\left(\frac{3}{5}\right)^{2/5}\times500\times\frac{1}{300} \quad \left(Using \left(ii\right)\right)
Vc=4.9×0.81×53=6.6LV_{c}=4.9\times0.81\times\frac{5}{3}=6.6 L