Solveeit Logo

Question

Question: (0, –1) and (0, 3) are two opposite vertices of a square. The other two vertices are....

(0, –1) and (0, 3) are two opposite vertices of a square. The other two vertices are.

A

(0, 1), (0, –3)

B

(3, –1) (0, 0)

C

(2, 1), (–2, 1)

D

(2, 2), (1, 1)

Answer

(2, 1), (–2, 1)

Explanation

Solution

Length of diagonal = 4

Now , AC2=AB2+BC2A C ^ { 2 } = A B ^ { 2 } + B C ^ { 2 }

AC2=2AB28=AB2A C ^ { 2 } = 2 A B ^ { 2 } \Rightarrow 8 = A B ^ { 2 }

AB=BC=22A B = B C = 2 \sqrt { 2 }

Now, let B(x,y)B ( x , y ); AB2=BC2\therefore A B ^ { 2 } = B C ^ { 2 }

(x0)2+(y+1)2=(x0)2+(y3)2( x - 0 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = ( x - 0 ) ^ { 2 } + ( y - 3 ) ^ { 2 }

x2+y2+2y+1=x2+y26y+9x ^ { 2 } + y ^ { 2 } + 2 y + 1 = x ^ { 2 } + y ^ { 2 } - 6 y + 9

y=1;x2+(2)2=8;x2=4x=±2y = 1 ; \therefore x ^ { 2 } + ( 2 ) ^ { 2 } = 8 ; \Rightarrow x ^ { 2 } = 4 \Rightarrow x = \pm 2

\therefore other vertices are (2, 1),(–2, 1).