Solveeit Logo

Question

Mathematics Question on Various Forms of the Equation of a Line

(0,1)(0, - 1) and (0,3)(0, 3) are two opposite vertices of a square. The other two vertices are :

A

(0, 1), (0, - 3)

B

(3, - 1), (0, 0)

C

(2, 1), (- 2,1)

D

(2, 2), (1, 1)

Answer

(2, 1), (- 2,1)

Explanation

Solution

Let the points be B(x1,y1)B \left( x _{1}, y _{1}\right) and D(x2,y2)D \left( x _{2}, y _{2}\right) mid point of BD=(x1+x22,y1+y22)BD =\left(\frac{ x _{1}+ x _{2}}{2}, \frac{ y _{1}+ y _{2}}{2}\right)
and mid point of AC=(0,1)AC =(0,1)
We know, mid point of both the diagonal lie on the same point EE.
x1+x22=0\Rightarrow \frac{ x _{1}+ x _{2}}{2}=0 and y1+y22=1\frac{ y _{1}+ y _{2}}{2}=1
x1+x2=0\Rightarrow x _{1}+ x _{2}=0 ...(i)
and y1+y2=y_{1}+y_{2}= ... (ii)
Slope of BD×BD \times slope of AC=1AC =-1
(y1y2)(x1x2)×(3+1)(00)=1\frac{\left( y _{1}- y _{2}\right)}{\left( x _{1}- x _{2}\right)} \times \frac{(3+1)}{(0-0)}=-1
y1y2=0\Rightarrow y _{1}- y _{2}=0 ... (iii)
Solving Eqs. (ii) and (iii), we get
y1=1,y2=1y _{1}=1, y _{2}=1
Now, slope of AB×A B \times slope of BC=1B C=-1
(y1+1)(x10)×(y13)(x10)=1\Rightarrow \frac{\left( y _{1}+1\right)}{\left( x _{1}-0\right)} \times \frac{\left( y _{1}-3\right)}{\left( x _{1}-0\right)}=-1
(y1+1)(y13)=x12\Rightarrow\left( y _{1}+1\right)\left( y _{1}-3\right)=- x _{1}^{2}
2(2)=x12[y1=1]\Rightarrow 2(-2)=- x _{1}^{2}\left[\because y _{1}=1\right]
x1=±2\Rightarrow x _{1}=\pm 2
\therefore The required points are (2,1)(2,1) and (2,1)(-2,1).