Solveeit Logo

Question

Question: \(y=\tan ^{-1}\left(\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right)\) express in terms of sin inver...

y=tan1(x1x2x+1x2)y=\tan ^{-1}\left(\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right) express in terms of sin inverse x

A

sin1xπ4\sin ^{-1} x-\frac{\pi}{4}

B

sin1x+π4\sin ^{-1} x+\frac{\pi}{4}

C

π4sin1x\frac{\pi}{4}-\sin ^{-1} x

D

3π4+sin1x\frac{3\pi}{4}+\sin ^{-1} x

Answer

sin1xπ4\sin ^{-1} x-\frac{\pi}{4}

Explanation

Solution

Let x=cosϕx = \cos \phi. Then 1x2=sinϕ\sqrt{1-x^2} = \sin \phi for ϕ[0,π]\phi \in [0, \pi]. The expression inside the tan1\tan^{-1} becomes cosϕsinϕcosϕ+sinϕ=1tanϕ1+tanϕ=tan(π4ϕ)\frac{\cos \phi - \sin \phi}{\cos \phi + \sin \phi} = \frac{1 - \tan \phi}{1 + \tan \phi} = \tan(\frac{\pi}{4} - \phi). So, y=tan1(tan(π4ϕ))y = \tan^{-1}(\tan(\frac{\pi}{4} - \phi)). For the principal value, we need π2<π4ϕ<π2-\frac{\pi}{2} < \frac{\pi}{4} - \phi < \frac{\pi}{2}. This implies 3π4<ϕ<π4-\frac{3\pi}{4} < -\phi < \frac{\pi}{4}, or π4<ϕ<3π4-\frac{\pi}{4} < \phi < \frac{3\pi}{4}. Since ϕ=cos1x\phi = \cos^{-1} x, the range of ϕ\phi is [0,π][0, \pi]. Thus, for ϕ[0,3π4)\phi \in [0, \frac{3\pi}{4}), which corresponds to x(12,1]x \in (-\frac{1}{\sqrt{2}}, 1], we have y=π4ϕy = \frac{\pi}{4} - \phi. Using ϕ=cos1x=π2sin1x\phi = \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x, we get y=π4(π2sin1x)=sin1xπ4y = \frac{\pi}{4} - (\frac{\pi}{2} - \sin^{-1} x) = \sin^{-1} x - \frac{\pi}{4}.