Question
Question: \(y=\tan ^{-1}\left(\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right)\) express in terms of sin inver...
y=tan−1(x+1−x2x−1−x2) express in terms of sin inverse x
A
sin−1x−4π
B
sin−1x+4π
C
4π−sin−1x
D
43π+sin−1x
Answer
sin−1x−4π
Explanation
Solution
Let x=cosϕ. Then 1−x2=sinϕ for ϕ∈[0,π]. The expression inside the tan−1 becomes cosϕ+sinϕcosϕ−sinϕ=1+tanϕ1−tanϕ=tan(4π−ϕ). So, y=tan−1(tan(4π−ϕ)). For the principal value, we need −2π<4π−ϕ<2π. This implies −43π<−ϕ<4π, or −4π<ϕ<43π. Since ϕ=cos−1x, the range of ϕ is [0,π]. Thus, for ϕ∈[0,43π), which corresponds to x∈(−21,1], we have y=4π−ϕ. Using ϕ=cos−1x=2π−sin−1x, we get y=4π−(2π−sin−1x)=sin−1x−4π.