Question
Question: Use Simpson's $3/8^{th}$ rule, to estimate $\int_{1}^{7} f(x)dx$ from the following data. | x | ...
Use Simpson's 3/8th rule, to estimate ∫17f(x)dx from the following data.
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
f(x) | 81 | 75 | 80 | 83 | 78 | 70 | 60 |

Answer
456
Explanation
Solution
The problem requires us to estimate the integral ∫17f(x)dx using Simpson's 3/8th rule from the given data.
The formula for the composite Simpson's 3/8th rule for n intervals (where n is a multiple of 3) is:
∫abf(x)dx≈83h[y0+3y1+3y2+2y3+3y4+3y5+y6]
From the data, we have:
x0=1,y0=f(1)=81
x1=2,y1=f(2)=75
x2=3,y2=f(3)=80
x3=4,y3=f(4)=83
x4=5,y4=f(5)=78
x5=6,y5=f(6)=70
x6=7,y6=f(7)=60
And the step size h=1.
Substitute these values into the formula:
∫17f(x)dx≈83(1)[81+3(75)+3(80)+2(83)+3(78)+3(70)+60]
∫17f(x)dx≈83[81+225+240+166+234+210+60]
∫17f(x)dx≈83×1216=456