Solveeit Logo

Question

Question: Use Simpson's $3/8^{th}$ rule, to estimate $\int_{1}^{7} f(x)dx$ from the following data. | x | ...

Use Simpson's 3/8th3/8^{th} rule, to estimate 17f(x)dx\int_{1}^{7} f(x)dx from the following data.

x1234567
f(x)81758083787060
Answer

456

Explanation

Solution

The problem requires us to estimate the integral 17f(x)dx\int_{1}^{7} f(x)dx using Simpson's 3/8th3/8^{th} rule from the given data.

The formula for the composite Simpson's 3/8th3/8^{th} rule for nn intervals (where nn is a multiple of 3) is:

abf(x)dx3h8[y0+3y1+3y2+2y3+3y4+3y5+y6]\int_{a}^{b} f(x)dx \approx \frac{3h}{8} [y_0 + 3y_1 + 3y_2 + 2y_3 + 3y_4 + 3y_5 + y_6]

From the data, we have:

x0=1,y0=f(1)=81x_0 = 1, y_0 = f(1) = 81
x1=2,y1=f(2)=75x_1 = 2, y_1 = f(2) = 75
x2=3,y2=f(3)=80x_2 = 3, y_2 = f(3) = 80
x3=4,y3=f(4)=83x_3 = 4, y_3 = f(4) = 83
x4=5,y4=f(5)=78x_4 = 5, y_4 = f(5) = 78
x5=6,y5=f(6)=70x_5 = 6, y_5 = f(6) = 70
x6=7,y6=f(7)=60x_6 = 7, y_6 = f(7) = 60

And the step size h=1h = 1.

Substitute these values into the formula:

17f(x)dx3(1)8[81+3(75)+3(80)+2(83)+3(78)+3(70)+60]\int_{1}^{7} f(x)dx \approx \frac{3(1)}{8} [81 + 3(75) + 3(80) + 2(83) + 3(78) + 3(70) + 60]
17f(x)dx38[81+225+240+166+234+210+60]\int_{1}^{7} f(x)dx \approx \frac{3}{8} [81 + 225 + 240 + 166 + 234 + 210 + 60]
17f(x)dx38×1216=456\int_{1}^{7} f(x)dx \approx \frac{3}{8} \times 1216 = 456