Solveeit Logo

Question

Question: The area bounded by region {(x, y) : |x + ay + a2| ≤ 1 ∀ a ∈ [0, 1]} is A, then [A] is (wher...

The area bounded by region {(x, y) : |x + ay + a2| ≤ 1 ∀ a ∈ [0, 1]} is A, then [A] is (where [.] denotes greatest integer function)

Answer

4

Explanation

Solution

We need the area of

R={(x,y):x+ay+a21a[0,1]}.R=\{(x,y) : |\,x+ay+a^2|\le1 \quad \forall\,a\in[0,1]\}.

That is, for every a[0,1]a\in[0,1],

1x+ay+a21.-1\le x+ay+a^2\le 1.

Define

f(a)=x+ay+a2.f(a)=x+ay+a^2.

Since f(a)f(a) is quadratic (with positive coefficient of a2a^2) it is convex. Thus, the maximum on [0,1][0,1] occurs at the endpoints a=0a=0 and a=1a=1 and the minimum occurs either at the vertex or at an endpoint.

Upper bound (f(a)1f(a)\le1):

  1. At a=0a=0:
      f(0)=x1f(0)=x\le1          (1)

  2. At a=1a=1:
      f(1)=x+y+11    x+y0f(1)=x+y+1\le1 \implies x+y\le0   (2)

Lower bound (f(a)1f(a)\ge-1):

The vertex is at

a=y2.a^*=-\frac{y}{2}.

We consider three cases.

Case I: For y[2,0]y\in[-2,0]
Here, a[0,1]a^*\in[0,1]. Then the minimum occurs at aa^*:

f(a)=xy241    x1+y24.(3)f(a^*)=x - \frac{y^2}{4}\ge -1 \implies x\ge -1+\frac{y^2}{4}. \quad (3)

Also, at a=0a=0: x1x\ge -1 (weaker than (3) since 1+y241-1+\frac{y^2}{4}\ge-1).

Thus for y[2,0]y\in[-2,0] the conditions are:

1+y24xmin{1,y}(since (2) says xy).-1+\frac{y^2}{4}\le x\le \min\{1,\,-y\} \quad \text{(since (2) says $x\le -y$)}.

Case II: For y>0y>0
Now a<0a^*<0 so the minimum is at a=0a=0:

x1.x\ge -1.

And maximum gives (2):

x+y0    xy.x+y\le0\implies x\le -y.

Also (1) gives x1x\le1 but xyx\le -y is stronger for y>0y>0.
For a nonempty interval we need 1y-1\le -y i.e. y1y\le1.
So for y[0,1]y\in[0,1]:

1xy.-1\le x\le -y.

Case III: For y<2y<-2
Now a>1a^*>1 so the minimum is at a=1a=1:

f(1)=x+y+11    x2y.(4)f(1)=x+y+1\ge -1 \implies x\ge -2-y.\quad (4)

The upper bound from (1) is x1x\le1. Also (2) gives xyx\le -y; but for y<2y<-2, note that y>2-y>2 so the x1x\le1 condition is stricter.
Thus, for y<2y<-2:

2yx1,-2-y\le x\le 1,

but this interval is nonempty only if 2y1-2-y\le 1 i.e. y3y\ge -3.
Hence for y[3,2]y\in[-3,-2] we have the region.

Area computation:

  1. For y[2,0]y\in[-2,0]:
    xx runs from L(y)=1+y24L(y)=-1+\frac{y^2}{4} to U(y)=yU(y)=-y.
    Area A1A_1:

    A1=y=20[(y)(1+y24)]dy=20(1yy24)dy.A_1=\int_{y=-2}^{0}\Bigl[(-y)-\Bigl(-1+\frac{y^2}{4}\Bigr)\Bigr]dy =\int_{-2}^{0}\Bigl(1-y-\frac{y^2}{4}\Bigr)dy.

    Antiderivative:

    (1yy24)dy=yy22y312.\int\Bigl(1-y-\frac{y^2}{4}\Bigr)dy = y-\frac{y^2}{2}-\frac{y^3}{12}.

    Evaluate from 2-2 to 00:

    [yy22y312]20=[0][242(8)12].\Bigl[ y-\frac{y^2}{2}-\frac{y^3}{12}\Bigr]_{-2}^{0} = \Bigl[0\Bigr]-\Bigl[ -2-\frac{4}{2}-\frac{(-8)}{12}\Bigr].

    At y=2y=-2:
    2  2+812=4+23=103-2-\;2+\frac{8}{12}=-4+\frac{2}{3}=-\frac{10}{3}.
    Thus, A1=0(103)=103A_1=0-(-\frac{10}{3})=\frac{10}{3}.

  2. For y[0,1]y\in[0,1]:
    xx runs from 1-1 to y-y.
    Area A2A_2:

    A2=01[(y)(1)]dy=01(1y)dy=[yy22]01=112=12.A_2=\int_{0}^{1}\Bigl[(-y)-(-1)\Bigr]dy=\int_{0}^{1}(1-y)dy =\left[y-\frac{y^2}{2}\right]_0^1=1-\frac{1}{2}=\frac{1}{2}.
  3. For y[3,2]y\in[-3,-2]:
    xx runs from L(y)=2yL(y)=-2-y to U(x)=1U(x)=1.
    Area A3A_3:

    A3=y=32[1(2y)]dy=32(3+y)dy.A_3=\int_{y=-3}^{-2}\Bigl[1-(-2-y)\Bigr]dy=\int_{-3}^{-2}(3+y)dy.

    Antiderivative:

    (3+y)dy=3y+y22.\int (3+y)dy=3y+\frac{y^2}{2}.

    Evaluate from 3-3 to 2-2:

    [3y+y22]32=[6+42][9+92]=[6+2][9+4.5]=(4)(4.5)=0.5.\Bigl[3y+\frac{y^2}{2}\Bigr]_{-3}^{-2} = \Bigl[ -6+\frac{4}{2}\Bigr] - \Bigl[ -9+\frac{9}{2}\Bigr] = \Bigl[-6+2\Bigr] -\Bigl[-9+4.5\Bigr] = (-4) - (-4.5)=0.5.

Total Area:

A=A1+A2+A3=103+12+12=103+1=1334.3333.A=A_1+A_2+A_3=\frac{10}{3}+\frac{1}{2}+\frac{1}{2}=\frac{10}{3}+1=\frac{13}{3}\approx 4.3333.

Taking the greatest integer, we have [A]=4[A]=4.


Summary of the Answer and Meta-information:

  • Explanation (minimal):
    For each a[0,1]a\in[0,1], the inequality x+ay+a21|x+ay+a^2|\le1 gives two conditions: one from the maximum (at a=0,1a=0,1) and one from the minimum (at the vertex or endpoint). Dividing into cases y[2,0],  y[0,1]y\in[-2,0],\; y\in[0,1], and y[3,2]y\in[-3,-2] we find the region in the xyxy-plane. Integrating the length in xx over the corresponding yy-intervals gives total area A=133A=\frac{13}{3} so [A]=4.