Solveeit Logo

Question

Question: tan(x+100°) = tanx (tan(x+50°))(tan(x-50°)) Find least positive value of x...

tan(x+100°) = tanx (tan(x+50°))(tan(x-50°))

Find least positive value of x

Answer

30°

Explanation

Solution

The given equation is: tan(x+100)=tanxtan(x+50)tan(x50)\tan(x+100^\circ) = \tan x \tan(x+50^\circ) \tan(x-50^\circ)

We can rewrite the equation as: tan(x+100)tanx=tan(x+50)tan(x50)\frac{\tan(x+100^\circ)}{\tan x} = \tan(x+50^\circ) \tan(x-50^\circ)

We use the identity tan(A+B)tan(AB)=tan2Atan2B1tan2Atan2B\tan(A+B)\tan(A-B) = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}. Alternatively, and more usefully for this problem, we can use the product-to-sum identity for cosines: tan(A+B)tan(AB)=sin(A+B)sin(AB)cos(A+B)cos(AB)\tan(A+B)\tan(A-B) = \frac{\sin(A+B)\sin(A-B)}{\cos(A+B)\cos(A-B)} Using sin(X)sin(Y)=12[cos(XY)cos(X+Y)]\sin(X)\sin(Y) = \frac{1}{2}[\cos(X-Y) - \cos(X+Y)] and cos(X)cos(Y)=12[cos(XY)+cos(X+Y)]\cos(X)\cos(Y) = \frac{1}{2}[\cos(X-Y) + \cos(X+Y)]: tan(A+B)tan(AB)=cos((A+B)(AB))cos((A+B)+(AB))cos((A+B)(AB))+cos((A+B)+(AB))\tan(A+B)\tan(A-B) = \frac{\cos((A+B)-(A-B)) - \cos((A+B)+(A-B))}{\cos((A+B)-(A-B)) + \cos((A+B)+(A-B))} tan(A+B)tan(AB)=cos(2B)cos(2A)cos(2B)+cos(2A)\tan(A+B)\tan(A-B) = \frac{\cos(2B) - \cos(2A)}{\cos(2B) + \cos(2A)}

Let A=xA=x and B=50B=50^\circ. Then A+B=x+50A+B = x+50^\circ and AB=x50A-B = x-50^\circ. So, tan(x+50)tan(x50)=cos(2×50)cos(2x)cos(2×50)+cos(2x)\tan(x+50^\circ)\tan(x-50^\circ) = \frac{\cos(2 \times 50^\circ) - \cos(2x)}{\cos(2 \times 50^\circ) + \cos(2x)} tan(x+50)tan(x50)=cos(100)cos(2x)cos(100)+cos(2x)\tan(x+50^\circ)\tan(x-50^\circ) = \frac{\cos(100^\circ) - \cos(2x)}{\cos(100^\circ) + \cos(2x)}

Substitute this back into the original equation: tan(x+100)=tanx(cos(100)cos(2x)cos(100)+cos(2x))\tan(x+100^\circ) = \tan x \left( \frac{\cos(100^\circ) - \cos(2x)}{\cos(100^\circ) + \cos(2x)} \right)

Convert tangents to sines and cosines: sin(x+100)cos(x+100)=sinxcosx(cos(100)cos(2x)cos(100)+cos(2x))\frac{\sin(x+100^\circ)}{\cos(x+100^\circ)} = \frac{\sin x}{\cos x} \left( \frac{\cos(100^\circ) - \cos(2x)}{\cos(100^\circ) + \cos(2x)} \right)

Cross-multiply: sin(x+100)cosx(cos(100)+cos(2x))=cos(x+100)sinx(cos(100)cos(2x))\sin(x+100^\circ)\cos x (\cos(100^\circ) + \cos(2x)) = \cos(x+100^\circ)\sin x (\cos(100^\circ) - \cos(2x))

Expand the terms: sin(x+100)cosxcos(100)+sin(x+100)cosxcos(2x)=cos(x+100)sinxcos(100)cos(x+100)sinxcos(2x)\sin(x+100^\circ)\cos x \cos(100^\circ) + \sin(x+100^\circ)\cos x \cos(2x) = \cos(x+100^\circ)\sin x \cos(100^\circ) - \cos(x+100^\circ)\sin x \cos(2x)

Rearrange terms to group common factors: cos(100)[sin(x+100)cosxcos(x+100)sinx]=cos(2x)[sin(x+100)cosx+cos(x+100)sinx]\cos(100^\circ) [\sin(x+100^\circ)\cos x - \cos(x+100^\circ)\sin x] = -\cos(2x) [\sin(x+100^\circ)\cos x + \cos(x+100^\circ)\sin x]

Use the sum/difference formulas for sine: sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin B

So, the equation becomes: cos(100)sin((x+100)x)=cos(2x)sin((x+100)+x)\cos(100^\circ) \sin((x+100^\circ)-x) = -\cos(2x) \sin((x+100^\circ)+x) cos(100)sin(100)=cos(2x)sin(2x+100)\cos(100^\circ) \sin(100^\circ) = -\cos(2x) \sin(2x+100^\circ)

Use the identity sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A: 12sin(2×100)=cos(2x)sin(2x+100)\frac{1}{2} \sin(2 \times 100^\circ) = -\cos(2x) \sin(2x+100^\circ) 12sin(200)=cos(2x)sin(2x+100)\frac{1}{2} \sin(200^\circ) = -\cos(2x) \sin(2x+100^\circ)

Since sin(200)=sin(180+20)=sin(20)\sin(200^\circ) = \sin(180^\circ+20^\circ) = -\sin(20^\circ): 12(sin(20))=cos(2x)sin(2x+100)\frac{1}{2} (-\sin(20^\circ)) = -\cos(2x) \sin(2x+100^\circ) 12sin(20)=cos(2x)sin(2x+100)\frac{1}{2} \sin(20^\circ) = \cos(2x) \sin(2x+100^\circ)

Use the product-to-sum identity for sine and cosine: sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]. Let A=2x+100A = 2x+100^\circ and B=2xB=2x. 12sin(20)=12[sin((2x+100)+2x)+sin((2x+100)2x)]\frac{1}{2} \sin(20^\circ) = \frac{1}{2} [\sin((2x+100^\circ)+2x) + \sin((2x+100^\circ)-2x)] 12sin(20)=12[sin(4x+100)+sin(100)]\frac{1}{2} \sin(20^\circ) = \frac{1}{2} [\sin(4x+100^\circ) + \sin(100^\circ)]

Multiply by 2: sin(20)=sin(4x+100)+sin(100)\sin(20^\circ) = \sin(4x+100^\circ) + \sin(100^\circ) sin(20)sin(100)=sin(4x+100)\sin(20^\circ) - \sin(100^\circ) = \sin(4x+100^\circ)

Use the difference-to-product identity for sine: sinCsinD=2cos(C+D2)sin(CD2)\sin C - \sin D = 2 \cos\left(\frac{C+D}{2}\right) \sin\left(\frac{C-D}{2}\right). 2cos(20+1002)sin(201002)=sin(4x+100)2 \cos\left(\frac{20^\circ+100^\circ}{2}\right) \sin\left(\frac{20^\circ-100^\circ}{2}\right) = \sin(4x+100^\circ) 2cos(60)sin(40)=sin(4x+100)2 \cos(60^\circ) \sin(-40^\circ) = \sin(4x+100^\circ) 2(12)(sin(40))=sin(4x+100)2 \left(\frac{1}{2}\right) (-\sin(40^\circ)) = \sin(4x+100^\circ) sin(40)=sin(4x+100)-\sin(40^\circ) = \sin(4x+100^\circ)

Since sinθ=sin(θ)-\sin \theta = \sin(-\theta): sin(40)=sin(4x+100)\sin(-40^\circ) = \sin(4x+100^\circ)

The general solution for sinθ=sinα\sin \theta = \sin \alpha is θ=nπ+(1)nα\theta = n\pi + (-1)^n \alpha, where nn is an integer. So, 4x+100=n×180+(1)n(40)4x+100^\circ = n \times 180^\circ + (-1)^n (-40^\circ).

We need to find the least positive value of xx. Case 1: nn is an even integer, n=2kn=2k. 4x+100=2k×180+(1)2k(40)4x+100^\circ = 2k \times 180^\circ + (-1)^{2k} (-40^\circ) 4x+100=360k404x+100^\circ = 360^\circ k - 40^\circ 4x=360k1404x = 360^\circ k - 140^\circ x=90k35x = 90^\circ k - 35^\circ

For k=0k=0, x=35x = -35^\circ (not positive). For k=1k=1, x=9035=55x = 90^\circ - 35^\circ = 55^\circ. (This is a positive value) For k=2k=2, x=18035=145x = 180^\circ - 35^\circ = 145^\circ.

Case 2: nn is an odd integer, n=2k+1n=2k+1. 4x+100=(2k+1)×180+(1)2k+1(40)4x+100^\circ = (2k+1) \times 180^\circ + (-1)^{2k+1} (-40^\circ) 4x+100=(2k+1)×180+404x+100^\circ = (2k+1) \times 180^\circ + 40^\circ 4x+100=360k+180+404x+100^\circ = 360^\circ k + 180^\circ + 40^\circ 4x+100=360k+2204x+100^\circ = 360^\circ k + 220^\circ 4x=360k+1204x = 360^\circ k + 120^\circ x=90k+30x = 90^\circ k + 30^\circ

For k=0k=0, x=30x = 30^\circ. (This is a positive value) For k=1k=1, x=90+30=120x = 90^\circ + 30^\circ = 120^\circ.

Comparing the positive values obtained: 5555^\circ and 3030^\circ. The least positive value of xx is 3030^\circ.

We must also check for conditions where the tangents are undefined, i.e., when their arguments are (m+1/2)π(m+1/2)\pi. x(m+1/2)πx \neq (m+1/2)\pi x+50(m+1/2)πx+50^\circ \neq (m+1/2)\pi x50(m+1/2)πx-50^\circ \neq (m+1/2)\pi x+100(m+1/2)πx+100^\circ \neq (m+1/2)\pi

For x=30x=30^\circ: tan(30)\tan(30^\circ) is defined. tan(30+50)=tan(80)\tan(30^\circ+50^\circ) = \tan(80^\circ) is defined. tan(3050)=tan(20)\tan(30^\circ-50^\circ) = \tan(-20^\circ) is defined. tan(30+100)=tan(130)\tan(30^\circ+100^\circ) = \tan(130^\circ) is defined. None of these angles are odd multiples of 9090^\circ. So x=30x=30^\circ is a valid solution.

The final answer is 30°\boxed{\text{30°}}.