Question
Question: $\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ$ $\sin^3 10^\circ + \sin^3 50^\circ - \s...
tan620∘−33tan420∘+27tan220∘
sin310∘+sin350∘−sin370∘

The value of tan620∘−33tan420∘+27tan220∘ is 3.
The value of sin310∘+sin350∘−sin370∘ is −83.
Solution
To solve the given expressions, we will address each one separately.
Part 1: tan620∘−33tan420∘+27tan220∘
Let θ=20∘. We know that 3θ=60∘. We use the triple angle identity for tangent:
tan3θ=1−3tan2θ3tanθ−tan3θSubstitute θ=20∘:
tan60∘=1−3tan220∘3tan20∘−tan320∘We know tan60∘=3. Let t=tan20∘.
3=1−3t23t−t3Cross-multiply:
3(1−3t2)=3t−t3 3−33t2=3t−t3Rearrange the terms to isolate terms with 3:
t3−3t=33t2−3Factor out t on the left and 3 on the right:
t(t2−3)=3(3t2−1)Square both sides of the equation:
[t(t2−3)]2=[3(3t2−1)]2 t2(t2−3)2=3(3t2−1)2Expand both sides:
t2(t4−6t2+9)=3(9t4−6t2+1) t6−6t4+9t2=27t4−18t2+3Move all terms to one side to match the given expression:
t6−6t4−27t4+9t2+18t2−3=0 t6−33t4+27t2−3=0Therefore,
tan620∘−33tan420∘+27tan220∘=3Part 2: sin310∘+sin350∘−sin370∘
Let x=sin10∘, y=sin50∘, and z=−sin70∘. We need to evaluate x3+y3+z3. We know that if x+y+z=0, then x3+y3+z3=3xyz. Let's check if x+y+z=0:
sin10∘+sin50∘−sin70∘Using the sum-to-product identity sinA+sinB=2sin(2A+B)cos(2A−B):
sin10∘+sin50∘=2sin(210∘+50∘)cos(250∘−10∘) =2sin30∘cos20∘ =2×21×cos20∘=cos20∘Now substitute this back into the sum:
cos20∘−sin70∘Since sin70∘=sin(90∘−20∘)=cos20∘:
cos20∘−cos20∘=0So, x+y+z=0 holds true. Therefore, sin310∘+sin350∘−sin370∘=3(sin10∘)(sin50∘)(−sin70∘).
=−3sin10∘sin50∘sin70∘We use the product identity sinθsin(60∘−θ)sin(60∘+θ)=41sin3θ. Here, θ=10∘. So, 60∘−θ=50∘ and 60∘+θ=70∘.
sin10∘sin50∘sin70∘=41sin(3×10∘) =41sin30∘ =41×21=81Substitute this value back into the expression:
−3×81=−83Explanation of the solution:
-
For the first expression:
- Let t=tan20∘. Use the triple angle identity tan3θ=1−3tan2θ3tanθ−tan3θ with θ=20∘.
- This gives tan60∘=3=1−3t23t−t3.
- Rearrange the equation to t(t2−3)=3(3t2−1).
- Square both sides: t2(t2−3)2=3(3t2−1)2.
- Expand and simplify: t2(t4−6t2+9)=3(9t4−6t2+1)⟹t6−6t4+9t2=27t4−18t2+3.
- Collect terms: t6−33t4+27t2=3.
-
For the second expression:
- Let x=sin10∘, y=sin50∘, z=−sin70∘.
- Check if x+y+z=0. sin10∘+sin50∘−sin70∘=2sin30∘cos20∘−sin70∘=cos20∘−cos20∘=0.
- Since x+y+z=0, then x3+y3+z3=3xyz.
- So, sin310∘+sin350∘−sin370∘=−3sin10∘sin50∘sin70∘.
- Use the product identity sinθsin(60∘−θ)sin(60∘+θ)=41sin3θ with θ=10∘.
- sin10∘sin50∘sin70∘=41sin(3×10∘)=41sin30∘=41×21=81.
- Substitute back: −3×81=−83.