Solveeit Logo

Question

Question: $\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ$ $\sin^3 10^\circ + \sin^3 50^\circ - \s...

tan62033tan420+27tan220\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ

sin310+sin350sin370\sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ

Answer

The value of tan62033tan420+27tan220\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ is 33.

The value of sin310+sin350sin370\sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ is 38-\frac{3}{8}.

Explanation

Solution

To solve the given expressions, we will address each one separately.

Part 1: tan62033tan420+27tan220\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ

Let θ=20\theta = 20^\circ. We know that 3θ=603\theta = 60^\circ. We use the triple angle identity for tangent:

tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}

Substitute θ=20\theta = 20^\circ:

tan60=3tan20tan32013tan220\tan 60^\circ = \frac{3 \tan 20^\circ - \tan^3 20^\circ}{1 - 3 \tan^2 20^\circ}

We know tan60=3\tan 60^\circ = \sqrt{3}. Let t=tan20t = \tan 20^\circ.

3=3tt313t2\sqrt{3} = \frac{3t - t^3}{1 - 3t^2}

Cross-multiply:

3(13t2)=3tt3\sqrt{3}(1 - 3t^2) = 3t - t^3 333t2=3tt3\sqrt{3} - 3\sqrt{3}t^2 = 3t - t^3

Rearrange the terms to isolate terms with 3\sqrt{3}:

t33t=33t23t^3 - 3t = 3\sqrt{3}t^2 - \sqrt{3}

Factor out tt on the left and 3\sqrt{3} on the right:

t(t23)=3(3t21)t(t^2 - 3) = \sqrt{3}(3t^2 - 1)

Square both sides of the equation:

[t(t23)]2=[3(3t21)]2[t(t^2 - 3)]^2 = [\sqrt{3}(3t^2 - 1)]^2 t2(t23)2=3(3t21)2t^2(t^2 - 3)^2 = 3(3t^2 - 1)^2

Expand both sides:

t2(t46t2+9)=3(9t46t2+1)t^2(t^4 - 6t^2 + 9) = 3(9t^4 - 6t^2 + 1) t66t4+9t2=27t418t2+3t^6 - 6t^4 + 9t^2 = 27t^4 - 18t^2 + 3

Move all terms to one side to match the given expression:

t66t427t4+9t2+18t23=0t^6 - 6t^4 - 27t^4 + 9t^2 + 18t^2 - 3 = 0 t633t4+27t23=0t^6 - 33t^4 + 27t^2 - 3 = 0

Therefore,

tan62033tan420+27tan220=3\tan^6 20^\circ - 33 \tan^4 20^\circ + 27 \tan^2 20^\circ = 3

Part 2: sin310+sin350sin370\sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ

Let x=sin10x = \sin 10^\circ, y=sin50y = \sin 50^\circ, and z=sin70z = -\sin 70^\circ. We need to evaluate x3+y3+z3x^3 + y^3 + z^3. We know that if x+y+z=0x+y+z=0, then x3+y3+z3=3xyzx^3+y^3+z^3 = 3xyz. Let's check if x+y+z=0x+y+z = 0:

sin10+sin50sin70\sin 10^\circ + \sin 50^\circ - \sin 70^\circ

Using the sum-to-product identity sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right):

sin10+sin50=2sin(10+502)cos(50102)\sin 10^\circ + \sin 50^\circ = 2 \sin\left(\frac{10^\circ+50^\circ}{2}\right) \cos\left(\frac{50^\circ-10^\circ}{2}\right) =2sin30cos20= 2 \sin 30^\circ \cos 20^\circ =2×12×cos20=cos20= 2 \times \frac{1}{2} \times \cos 20^\circ = \cos 20^\circ

Now substitute this back into the sum:

cos20sin70\cos 20^\circ - \sin 70^\circ

Since sin70=sin(9020)=cos20\sin 70^\circ = \sin (90^\circ - 20^\circ) = \cos 20^\circ:

cos20cos20=0\cos 20^\circ - \cos 20^\circ = 0

So, x+y+z=0x+y+z=0 holds true. Therefore, sin310+sin350sin370=3(sin10)(sin50)(sin70)\sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ = 3 (\sin 10^\circ)(\sin 50^\circ)(-\sin 70^\circ).

=3sin10sin50sin70= -3 \sin 10^\circ \sin 50^\circ \sin 70^\circ

We use the product identity sinθsin(60θ)sin(60+θ)=14sin3θ\sin \theta \sin(60^\circ - \theta) \sin(60^\circ + \theta) = \frac{1}{4} \sin 3\theta. Here, θ=10\theta = 10^\circ. So, 60θ=5060^\circ - \theta = 50^\circ and 60+θ=7060^\circ + \theta = 70^\circ.

sin10sin50sin70=14sin(3×10)\sin 10^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{4} \sin (3 \times 10^\circ) =14sin30= \frac{1}{4} \sin 30^\circ =14×12=18= \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}

Substitute this value back into the expression:

3×18=38-3 \times \frac{1}{8} = -\frac{3}{8}

Explanation of the solution:

  1. For the first expression:

    • Let t=tan20t = \tan 20^\circ. Use the triple angle identity tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} with θ=20\theta = 20^\circ.
    • This gives tan60=3=3tt313t2\tan 60^\circ = \sqrt{3} = \frac{3t - t^3}{1 - 3t^2}.
    • Rearrange the equation to t(t23)=3(3t21)t(t^2 - 3) = \sqrt{3}(3t^2 - 1).
    • Square both sides: t2(t23)2=3(3t21)2t^2(t^2 - 3)^2 = 3(3t^2 - 1)^2.
    • Expand and simplify: t2(t46t2+9)=3(9t46t2+1)    t66t4+9t2=27t418t2+3t^2(t^4 - 6t^2 + 9) = 3(9t^4 - 6t^2 + 1) \implies t^6 - 6t^4 + 9t^2 = 27t^4 - 18t^2 + 3.
    • Collect terms: t633t4+27t2=3t^6 - 33t^4 + 27t^2 = 3.
  2. For the second expression:

    • Let x=sin10x = \sin 10^\circ, y=sin50y = \sin 50^\circ, z=sin70z = -\sin 70^\circ.
    • Check if x+y+z=0x+y+z=0. sin10+sin50sin70=2sin30cos20sin70=cos20cos20=0\sin 10^\circ + \sin 50^\circ - \sin 70^\circ = 2\sin 30^\circ \cos 20^\circ - \sin 70^\circ = \cos 20^\circ - \cos 20^\circ = 0.
    • Since x+y+z=0x+y+z=0, then x3+y3+z3=3xyzx^3+y^3+z^3 = 3xyz.
    • So, sin310+sin350sin370=3sin10sin50sin70\sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ = -3 \sin 10^\circ \sin 50^\circ \sin 70^\circ.
    • Use the product identity sinθsin(60θ)sin(60+θ)=14sin3θ\sin \theta \sin(60^\circ - \theta) \sin(60^\circ + \theta) = \frac{1}{4} \sin 3\theta with θ=10\theta = 10^\circ.
    • sin10sin50sin70=14sin(3×10)=14sin30=14×12=18\sin 10^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{4} \sin (3 \times 10^\circ) = \frac{1}{4} \sin 30^\circ = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}.
    • Substitute back: 3×18=38-3 \times \frac{1}{8} = -\frac{3}{8}.