Solveeit Logo

Question

Question: \(\sin ^{-1}\left(\frac{2x}{1+x^{2}}\right)=2\tan ^{-1}x\)...

sin1(2x1+x2)=2tan1x\sin ^{-1}\left(\frac{2x}{1+x^{2}}\right)=2\tan ^{-1}x

Answer

The solution is the set of all xx such that 1x1-1 \le x \le 1.

Explanation

Solution

Let y=tan1xy = \tan^{-1}x. The principal range of tan1x\tan^{-1}x is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}), so 2y(π,π)2y \in (-\pi, \pi). Substituting x=tanyx = \tan y into 2x1+x2\frac{2x}{1+x^2} gives 2tany1+tan2y=sin(2y)\frac{2\tan y}{1+\tan^2 y} = \sin(2y). The equation becomes sin1(sin(2y))=2y\sin^{-1}(\sin(2y)) = 2y. This is valid if 2y[π2,π2]2y \in [-\frac{\pi}{2}, \frac{\pi}{2}], which means y[π4,π4]y \in [-\frac{\pi}{4}, \frac{\pi}{4}]. Since y=tan1xy = \tan^{-1}x, we have tan1x[π4,π4]\tan^{-1}x \in [-\frac{\pi}{4}, \frac{\pi}{4}]. This implies 1x1-1 \le x \le 1.