Question
Question: Sigma (ab)^ 3 for a cubic equation x^3+4x+1...
Sigma (ab)^ 3 for a cubic equation x^3+4x+1
67
Solution
The problem asks for the value of ∑(αβ)3 for the cubic equation x3+4x+1=0. Let the roots of the equation be α,β,γ.
1. Apply Vieta's Formulas: For a cubic equation ax3+bx2+cx+d=0, Vieta's formulas state:
- Sum of roots: α+β+γ=−b/a
- Sum of products of roots taken two at a time: αβ+βγ+γα=c/a
- Product of roots: αβγ=−d/a
For the given equation x3+0x2+4x+1=0, we have a=1,b=0,c=4,d=1. So,
- α+β+γ=−0/1=0
- αβ+βγ+γα=4/1=4
- αβγ=−1/1=−1
2. Define New Variables: We need to find the value of ∑(αβ)3=(αβ)3+(βγ)3+(γα)3. Let A=αβ, B=βγ, C=γα. We need to find A3+B3+C3.
3. Calculate Sums and Products of New Variables:
-
Sum:
A+B+C=αβ+βγ+γα=4 -
Sum of products taken two at a time:
AB+BC+CA=(αβ)(βγ)+(βγ)(γα)+(γα)(αβ)
=αβ2γ+βγ2α+γα2β
Factor out αβγ:
=αβγ(β+γ+α)
Substitute the values from Vieta's formulas:
=(−1)(0)=0 -
Product:
ABC=(αβ)(βγ)(γα)
=α2β2γ2=(αβγ)2
Substitute the value from Vieta's formulas:
=(−1)2=1
4. Use the Sum of Cubes Identity:
The identity for the sum of cubes of three variables is:
A3+B3+C3−3ABC=(A+B+C)(A2+B2+C2−(AB+BC+CA))
First, calculate A2+B2+C2:
A2+B2+C2=(A+B+C)2−2(AB+BC+CA)
Substitute the values calculated above:
A2+B2+C2=(4)2−2(0)
=16−0=16
Now, substitute all values into the sum of cubes identity:
A3+B3+C3−3(1)=(4)(16−0)
A3+B3+C3−3=(4)(16)
A3+B3+C3−3=64
A3+B3+C3=64+3
A3+B3+C3=67
Thus, ∑(αβ)3=67.