Solveeit Logo

Question

Question: Consider a vector equation $k\overrightarrow{x} + (\overrightarrow{x} \cdot \overrightarrow{a}) \ove...

Consider a vector equation kx+(xa)b=c,k0.kbak\overrightarrow{x} + (\overrightarrow{x} \cdot \overrightarrow{a}) \overrightarrow{b} = \overrightarrow{c}, k \neq 0. k \neq -\overrightarrow{b} \cdot \overrightarrow{a}. Then x\overrightarrow{x} is equal to

A

1k(((ab)ccak+aba)\frac{1}{k}(((\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{a} \cdot \overrightarrow{b}}\overrightarrow{a})

B

1k(c+cak+bab)\frac{1}{k}(\overrightarrow{c} + \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{b} \cdot \overrightarrow{a}}\overrightarrow{b})

C

1k(((ab)c+cak+aba)\frac{1}{k}(((\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} + \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{a} \cdot \overrightarrow{b}}\overrightarrow{a})

D

1k(ccak+bab)\frac{1}{k}(\overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{b} \cdot \overrightarrow{a}}\overrightarrow{b})

Answer

D

Explanation

Solution

Let the given vector equation be kx+(xa)b=ck\overrightarrow{x} + (\overrightarrow{x} \cdot \overrightarrow{a}) \overrightarrow{b} = \overrightarrow{c}. Let S=xaS = \overrightarrow{x} \cdot \overrightarrow{a}. Since x\overrightarrow{x} and a\overrightarrow{a} are vectors, SS is a scalar. The equation becomes kx+Sb=ck\overrightarrow{x} + S\overrightarrow{b} = \overrightarrow{c}. Rearranging to solve for x\overrightarrow{x}: kx=cSbk\overrightarrow{x} = \overrightarrow{c} - S\overrightarrow{b} x=1k(cSb)\overrightarrow{x} = \frac{1}{k}(\overrightarrow{c} - S\overrightarrow{b})

Now, we find the scalar SS by taking the dot product of x\overrightarrow{x} with a\overrightarrow{a}: S=xaS = \overrightarrow{x} \cdot \overrightarrow{a} Substitute the expression for x\overrightarrow{x}: S=(1k(cSb))aS = \left(\frac{1}{k}(\overrightarrow{c} - S\overrightarrow{b})\right) \cdot \overrightarrow{a} Using the linearity property of the dot product: S=1k(ca(Sb)a)S = \frac{1}{k} (\overrightarrow{c} \cdot \overrightarrow{a} - (S\overrightarrow{b}) \cdot \overrightarrow{a}) S=1k(caS(ba))S = \frac{1}{k} (\overrightarrow{c} \cdot \overrightarrow{a} - S(\overrightarrow{b} \cdot \overrightarrow{a})) Multiply both sides by kk: kS=caS(ba)kS = \overrightarrow{c} \cdot \overrightarrow{a} - S(\overrightarrow{b} \cdot \overrightarrow{a}) Rearrange to solve for SS: kS+S(ba)=cakS + S(\overrightarrow{b} \cdot \overrightarrow{a}) = \overrightarrow{c} \cdot \overrightarrow{a} S(k+ba)=caS(k + \overrightarrow{b} \cdot \overrightarrow{a}) = \overrightarrow{c} \cdot \overrightarrow{a} Given that kbak \neq -\overrightarrow{b} \cdot \overrightarrow{a}, the term (k+ba)(k + \overrightarrow{b} \cdot \overrightarrow{a}) is non-zero, so we can divide by it: S=cak+baS = \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{b} \cdot \overrightarrow{a}}

Substitute this value of SS back into the expression for x\overrightarrow{x}: x=1k(cSb)\overrightarrow{x} = \frac{1}{k}(\overrightarrow{c} - S\overrightarrow{b}) x=1k(ccak+bab)\overrightarrow{x} = \frac{1}{k}\left(\overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{k + \overrightarrow{b} \cdot \overrightarrow{a}}\overrightarrow{b}\right)