Solveeit Logo

Question

Question: An object is moving with speed 10 cm/s towards two plane mirror as shown. The relative velocity of t...

An object is moving with speed 10 cm/s towards two plane mirror as shown. The relative velocity of two (first) images formed in mirrors is ______ m/s.

Answer

0.20

Explanation

Solution

To find the relative velocity of the two first images, we first determine the velocity of each image formed by the respective plane mirror. The formula for the velocity of an image (vI\vec{v}_I) formed by a stationary plane mirror, when the object velocity is vO\vec{v}_O, and the unit normal vector to the mirror pointing towards the object is n^\hat{n}, is given by:

vI=vO2(vOn^)n^\vec{v}_I = \vec{v}_O - 2(\vec{v}_O \cdot \hat{n})\hat{n}

Let's set up a coordinate system. Let the intersection point of the mirrors be the origin (0,0). The object is moving along the positive y-axis with a speed of V=10 cm/sV = 10 \text{ cm/s}. So, the object's velocity is vO=(0,V)\vec{v}_O = (0, V).

We use the standard trigonometric values for 3737^\circ and 5353^\circ: sin37=3/5\sin 37^\circ = 3/5, cos37=4/5\cos 37^\circ = 4/5, sin53=4/5\sin 53^\circ = 4/5, cos53=3/5\cos 53^\circ = 3/5.

1. Velocity of the image formed by the Left Mirror (Mirror 1):
The left mirror makes an angle of 5353^\circ with the vertical (positive y-axis) towards the negative x-axis. This means the mirror itself makes an angle of 90+53=14390^\circ + 53^\circ = 143^\circ with the positive x-axis.
The unit normal vector n^1\hat{n}_1 to this mirror, pointing towards the object (which is in the upper half-plane), will make an angle of 14390=53143^\circ - 90^\circ = 53^\circ with the positive x-axis.
So, n^1=(cos53,sin53)=(3/5,4/5)\hat{n}_1 = (\cos 53^\circ, \sin 53^\circ) = (3/5, 4/5).

Now, calculate vOn^1\vec{v}_O \cdot \hat{n}_1: vOn^1=(0,V)(3/5,4/5)=0×(3/5)+V×(4/5)=4V/5\vec{v}_O \cdot \hat{n}_1 = (0, V) \cdot (3/5, 4/5) = 0 \times (3/5) + V \times (4/5) = 4V/5 The velocity of image I1I_1 is: vI1=vO2(vOn^1)n^1\vec{v}_{I1} = \vec{v}_O - 2(\vec{v}_O \cdot \hat{n}_1)\hat{n}_1 vI1=(0,V)2(4V/5)(3/5,4/5)\vec{v}_{I1} = (0, V) - 2(4V/5)(3/5, 4/5) vI1=(0,V)(24V/25,32V/25)\vec{v}_{I1} = (0, V) - (24V/25, 32V/25) vI1=(24V/25,V32V/25)=(24V/25,(25V32V)/25)\vec{v}_{I1} = (-24V/25, V - 32V/25) = (-24V/25, (25V - 32V)/25) vI1=(24V/25,7V/25)\vec{v}_{I1} = (-24V/25, -7V/25)

2. Velocity of the image formed by the Right Mirror (Mirror 2):
The right mirror makes an angle of 3737^\circ with the vertical (positive y-axis) towards the positive x-axis. This means the mirror itself makes an angle of 9037=5390^\circ - 37^\circ = 53^\circ with the positive x-axis.
The unit normal vector n^2\hat{n}_2 to this mirror, pointing towards the object, will make an angle of 53+90=14353^\circ + 90^\circ = 143^\circ with the positive x-axis.
So, n^2=(cos143,sin143)=(cos37,sin37)=(4/5,3/5)\hat{n}_2 = (\cos 143^\circ, \sin 143^\circ) = (-\cos 37^\circ, \sin 37^\circ) = (-4/5, 3/5).

Now, calculate vOn^2\vec{v}_O \cdot \hat{n}_2: vOn^2=(0,V)(4/5,3/5)=0×(4/5)+V×(3/5)=3V/5\vec{v}_O \cdot \hat{n}_2 = (0, V) \cdot (-4/5, 3/5) = 0 \times (-4/5) + V \times (3/5) = 3V/5 The velocity of image I2I_2 is: vI2=vO2(vOn^2)n^2\vec{v}_{I2} = \vec{v}_O - 2(\vec{v}_O \cdot \hat{n}_2)\hat{n}_2 vI2=(0,V)2(3V/5)(4/5,3/5)\vec{v}_{I2} = (0, V) - 2(3V/5)(-4/5, 3/5) vI2=(0,V)(24V/25,18V/25)\vec{v}_{I2} = (0, V) - (-24V/25, 18V/25) vI2=(24V/25,V18V/25)=(24V/25,(25V18V)/25)\vec{v}_{I2} = (24V/25, V - 18V/25) = (24V/25, (25V - 18V)/25) vI2=(24V/25,7V/25)\vec{v}_{I2} = (24V/25, 7V/25)

3. Relative Velocity of the two images:
The relative velocity of I1I_1 with respect to I2I_2 is vrel=vI1vI2\vec{v}_{rel} = \vec{v}_{I1} - \vec{v}_{I2}. vrel=(24V/25,7V/25)(24V/25,7V/25)\vec{v}_{rel} = (-24V/25, -7V/25) - (24V/25, 7V/25) vrel=(24V/2524V/25,7V/257V/25)\vec{v}_{rel} = (-24V/25 - 24V/25, -7V/25 - 7V/25) vrel=(48V/25,14V/25)\vec{v}_{rel} = (-48V/25, -14V/25)

The magnitude of the relative velocity is: vrel=(48V/25)2+(14V/25)2||\vec{v}_{rel}|| = \sqrt{(-48V/25)^2 + (-14V/25)^2} vrel=(V/25)2(482+142)||\vec{v}_{rel}|| = \sqrt{(V/25)^2 (48^2 + 14^2)} vrel=(V/25)2304+196||\vec{v}_{rel}|| = (V/25) \sqrt{2304 + 196} vrel=(V/25)2500||\vec{v}_{rel}|| = (V/25) \sqrt{2500} vrel=(V/25)×50||\vec{v}_{rel}|| = (V/25) \times 50 vrel=2V||\vec{v}_{rel}|| = 2V

Given V=10 cm/sV = 10 \text{ cm/s}. vrel=2×10 cm/s=20 cm/s||\vec{v}_{rel}|| = 2 \times 10 \text{ cm/s} = 20 \text{ cm/s} Convert to m/s: 20 cm/s=20×102 m/s=0.20 m/s20 \text{ cm/s} = 20 \times 10^{-2} \text{ m/s} = 0.20 \text{ m/s}