Solveeit Logo

Question

Question: Property:Locus of the foot of perpendicular from focus of an ellipse to any tangent is...

Property:Locus of the foot of perpendicular from focus of an ellipse to any tangent is

Answer

Auxiliary circle

Explanation

Solution

Let the equation of the ellipse be x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where a>ba > b. The foci are at F1(ae,0)F_1(ae, 0) and F2(ae,0)F_2(-ae, 0), where ee is the eccentricity. The equation of a tangent to the ellipse with slope mm is y=mx±a2m2+b2y = mx \pm \sqrt{a^2 m^2 + b^2}.

Consider the focus F1(ae,0)F_1(ae, 0). Let P(x,y)P(x, y) be the foot of the perpendicular from F1F_1 to the tangent y=mx+a2m2+b2y = mx + \sqrt{a^2 m^2 + b^2}. The line segment F1PF_1 P is perpendicular to the tangent. The slope of the tangent is mm. The slope of F1PF_1 P is y0xae=yxae\frac{y - 0}{x - ae} = \frac{y}{x - ae}. Since the lines are perpendicular, the product of their slopes is 1-1: m×yxae=1m \times \frac{y}{x - ae} = -1 my=(xae)my = -(x - ae) x+my=aex + my = ae (Equation 1)

The point P(x,y)P(x, y) lies on the tangent y=mx+a2m2+b2y = mx + \sqrt{a^2 m^2 + b^2}. mxy=a2m2+b2mx - y = -\sqrt{a^2 m^2 + b^2} (Equation 2)

We want to find the locus of P(x,y)P(x, y), so we need to eliminate mm from Equations 1 and 2. Square both equations: From Equation 1: (x+my)2=(ae)2    x2+2mxy+m2y2=a2e2(x + my)^2 = (ae)^2 \implies x^2 + 2mxy + m^2 y^2 = a^2 e^2 From Equation 2: (mxy)2=(a2m2+b2)2    m2x22mxy+y2=a2m2+b2(mx - y)^2 = (-\sqrt{a^2 m^2 + b^2})^2 \implies m^2 x^2 - 2mxy + y^2 = a^2 m^2 + b^2

Add the two squared equations: (x2+2mxy+m2y2)+(m2x22mxy+y2)=a2e2+a2m2+b2(x^2 + 2mxy + m^2 y^2) + (m^2 x^2 - 2mxy + y^2) = a^2 e^2 + a^2 m^2 + b^2 x2+m2y2+m2x2+y2=a2e2+a2m2+b2x^2 + m^2 y^2 + m^2 x^2 + y^2 = a^2 e^2 + a^2 m^2 + b^2 x2(1+m2)+y2(1+m2)=a2e2+a2m2+b2x^2(1 + m^2) + y^2(1 + m^2) = a^2 e^2 + a^2 m^2 + b^2 (x2+y2)(1+m2)=a2e2+a2m2+b2(x^2 + y^2)(1 + m^2) = a^2 e^2 + a^2 m^2 + b^2

We know that for an ellipse, b2=a2(1e2)b^2 = a^2 (1 - e^2), so a2e2=a2b2a^2 e^2 = a^2 - b^2. Substitute this into the equation: (x2+y2)(1+m2)=(a2b2)+a2m2+b2(x^2 + y^2)(1 + m^2) = (a^2 - b^2) + a^2 m^2 + b^2 (x2+y2)(1+m2)=a2+a2m2(x^2 + y^2)(1 + m^2) = a^2 + a^2 m^2 (x2+y2)(1+m2)=a2(1+m2)(x^2 + y^2)(1 + m^2) = a^2 (1 + m^2)

Assuming 1+m201 + m^2 \neq 0 (which is always true for real mm), we can divide both sides by 1+m21 + m^2: x2+y2=a2x^2 + y^2 = a^2

This is the equation of a circle centered at the origin (0,0)(0, 0) with radius aa. This circle is known as the auxiliary circle of the ellipse.

If we started with the other focus F2(ae,0)F_2(-ae, 0), the equations would be: xmy=aex - my = -ae (perpendicularity condition) mxy=a2m2+b2mx - y = -\sqrt{a^2 m^2 + b^2} (point on the tangent) Squaring and adding these equations gives: (xmy)2+(mxy)2=(ae)2+(a2m2+b2)2(x - my)^2 + (mx - y)^2 = (-ae)^2 + (-\sqrt{a^2 m^2 + b^2})^2 x22mxy+m2y2+m2x22mxy+y2=a2e2+a2m2+b2x^2 - 2mxy + m^2 y^2 + m^2 x^2 - 2mxy + y^2 = a^2 e^2 + a^2 m^2 + b^2 x2(1+m2)+y2(1+m2)4mxy=a2e2+a2m2+b2x^2(1 + m^2) + y^2(1 + m^2) - 4mxy = a^2 e^2 + a^2 m^2 + b^2 This does not seem right. Let's recheck the equation of the perpendicular line from F2(ae,0)F_2(-ae, 0). The slope of the tangent is mm. The slope of the perpendicular line from F2(ae,0)F_2(-ae, 0) is 1/m-1/m. The equation of the perpendicular line is y0=1m(x(ae))y - 0 = -\frac{1}{m} (x - (-ae)), so y=1m(x+ae)y = -\frac{1}{m} (x + ae), which is my=(x+ae)my = -(x + ae), or x+my=aex + my = -ae.

So the system of equations for the foot of the perpendicular from F2F_2 is: 1') x+my=aex + my = -ae 2') mxy=a2m2+b2mx - y = -\sqrt{a^2 m^2 + b^2} (same tangent equation)

Square both equations: (x+my)2=(ae)2    x2+2mxy+m2y2=a2e2(x + my)^2 = (-ae)^2 \implies x^2 + 2mxy + m^2 y^2 = a^2 e^2 (mxy)2=(a2m2+b2)2    m2x22mxy+y2=a2m2+b2(mx - y)^2 = (-\sqrt{a^2 m^2 + b^2})^2 \implies m^2 x^2 - 2mxy + y^2 = a^2 m^2 + b^2

Add the two squared equations: (x2+2mxy+m2y2)+(m2x22mxy+y2)=a2e2+a2m2+b2(x^2 + 2mxy + m^2 y^2) + (m^2 x^2 - 2mxy + y^2) = a^2 e^2 + a^2 m^2 + b^2 x2(1+m2)+y2(1+m2)=a2e2+a2m2+b2x^2(1 + m^2) + y^2(1 + m^2) = a^2 e^2 + a^2 m^2 + b^2 (x2+y2)(1+m2)=a2e2+a2m2+b2(x^2 + y^2)(1 + m^2) = a^2 e^2 + a^2 m^2 + b^2 Using a2e2=a2b2a^2 e^2 = a^2 - b^2: (x2+y2)(1+m2)=(a2b2)+a2m2+b2(x^2 + y^2)(1 + m^2) = (a^2 - b^2) + a^2 m^2 + b^2 (x2+y2)(1+m2)=a2+a2m2(x^2 + y^2)(1 + m^2) = a^2 + a^2 m^2 (x2+y2)(1+m2)=a2(1+m2)(x^2 + y^2)(1 + m^2) = a^2 (1 + m^2) x2+y2=a2x^2 + y^2 = a^2

In both cases (perpendicular from F1F_1 or F2F_2), the locus of the foot of the perpendicular is the auxiliary circle x2+y2=a2x^2 + y^2 = a^2.

The auxiliary circle is a circle with center at the center of the ellipse and radius equal to the semi-major axis aa.