Solveeit Logo

Question

Question: The time after which the cone is empty is:...

The time after which the cone is empty is:

A

H/2k

B

H/k

C

H/3k

D

2H/k

Answer

H/k

Explanation

Solution

Let r be liquid radius, h be liquid height.
rh=RH    h=HRr\frac{r}{h} = \frac{R}{H} \implies h = \frac{H}{R}r.
Volume V=13πr2h=13πr2(HRr)=πH3Rr3V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 (\frac{H}{R}r) = \frac{\pi H}{3R} r^3.
Surface area A=πr2A = \pi r^2.
Rate of evaporation dVdt=kA=kπr2\frac{dV}{dt} = -kA = -k\pi r^2.
Also, dVdt=πH3R(3r2drdt)=πHRr2drdt\frac{dV}{dt} = \frac{\pi H}{3R} (3r^2 \frac{dr}{dt}) = \frac{\pi H}{R} r^2 \frac{dr}{dt}.
Equating: πHRr2drdt=kπr2    drdt=kRH\frac{\pi H}{R} r^2 \frac{dr}{dt} = -k\pi r^2 \implies \frac{dr}{dt} = -\frac{kR}{H}.
Integrate: r(t)=kRHt+Cr(t) = -\frac{kR}{H}t + C.
At t=0t=0, r=R    C=Rr=R \implies C=R. So r(t)=RkRHt=R(1kHt)r(t) = R - \frac{kR}{H}t = R(1 - \frac{k}{H}t).
Cone is empty when r(t)=0r(t)=0: 0=R(1kHT)    T=Hk0 = R(1 - \frac{k}{H}T) \implies T = \frac{H}{k}.